Based on a nonhydrostatic numerical ocean model developed by one of the authors, the interaction of an intemal solitary wave with a step-type topography was investigated. Over the step topography, the flow pattern cou...Based on a nonhydrostatic numerical ocean model developed by one of the authors, the interaction of an intemal solitary wave with a step-type topography was investigated. Over the step topography, the flow pattern could be classified into three categories: 1) the propagation and spatial structure of the internal solitary wave was little influenced by the bottom topography, 2) the internal solitary wave was significantly distorted by the blocking effect of the topography without the occurrence of wave breaking and 3) the internal solitary wave was broken as it encountered and passed over the bottom topography. A detailed description of the processes leading to wave breaking is given in this paper together with energy budget analysis. The results revealed that the maximum of the energy dissipation rate is no more than 40%, which is consistent with available experimental data.展开更多
The parallel computing algorithm for a nonhydrostatic model on one or multiple Graphic Processing Units (GPUs) for the simulation of internal solitary waves is presented and discussed. The computational efficiency o...The parallel computing algorithm for a nonhydrostatic model on one or multiple Graphic Processing Units (GPUs) for the simulation of internal solitary waves is presented and discussed. The computational efficiency of the GPU scheme is analyzed by a series of numerical experiments, including an ideal case and the field scale simulations, performed on the workstation and the super- computer system. The calculated results show that the speedup of the developed GPU-based parallel computing scheme, compared to the implementation on a single CPU core, increases with the number of computational grid cells, and the speedup can increase quasi- linearly with respect to the number of involved GPUs for the problem with relatively large number of grid cells within 32 GPUs.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(40576010).
文摘Based on a nonhydrostatic numerical ocean model developed by one of the authors, the interaction of an intemal solitary wave with a step-type topography was investigated. Over the step topography, the flow pattern could be classified into three categories: 1) the propagation and spatial structure of the internal solitary wave was little influenced by the bottom topography, 2) the internal solitary wave was significantly distorted by the blocking effect of the topography without the occurrence of wave breaking and 3) the internal solitary wave was broken as it encountered and passed over the bottom topography. A detailed description of the processes leading to wave breaking is given in this paper together with energy budget analysis. The results revealed that the maximum of the energy dissipation rate is no more than 40%, which is consistent with available experimental data.
基金supported by the Natural Science Foundation of Tianjin, China (Grant No. 12JCZDJC30200)the National Natural Science Foundation of China (Grant No. 51021004)the Fundamental Research Fund for the Central Nonprofit Research Institutes of China (Grant No. TKS100206)
文摘The parallel computing algorithm for a nonhydrostatic model on one or multiple Graphic Processing Units (GPUs) for the simulation of internal solitary waves is presented and discussed. The computational efficiency of the GPU scheme is analyzed by a series of numerical experiments, including an ideal case and the field scale simulations, performed on the workstation and the super- computer system. The calculated results show that the speedup of the developed GPU-based parallel computing scheme, compared to the implementation on a single CPU core, increases with the number of computational grid cells, and the speedup can increase quasi- linearly with respect to the number of involved GPUs for the problem with relatively large number of grid cells within 32 GPUs.