Attaining a decarbonized and sustainable energy system,which is the core solution to global energy issues,is accessible through the development of hydrogen energy.Proton-exchange membrane water electrolyzers(PEMWEs)ar...Attaining a decarbonized and sustainable energy system,which is the core solution to global energy issues,is accessible through the development of hydrogen energy.Proton-exchange membrane water electrolyzers(PEMWEs)are promising devices for hydrogen production,given their high efficiency,rapid responsiveness,and compactness.Bipolar plates account for a relatively high percentage of the total cost and weight compared with other components of PEMWEs.Thus,optimization of their design may accelerate the promotion of PEMWEs.This paper reviews the advances in materials and flow-field design for bipolar plates.First,the working conditions of proton-exchange membrane fuel cells(PEMFCs)and PEMWEs are compared,including reaction direction,operating temperature,pressure,input/output,and potential.Then,the current research status of bipolar-plate substrates and surface coatings is summarized,and some typical channel-rib flow fields and porous flow fields are presented.Furthermore,the effects of materials on mass and heat transfer and the possibility of reducing corrosion by improving the flow field structure are explored.Finally,this review discusses the potential directions of the development of bipolar-plate design,including material fabrication,flow-field geometry optimization using threedimensional printing,and surface-coating composition optimization based on computational materials science.展开更多
Temperature-induced cracking during the construction of mass concrete is a significant concern.Numerical simulations of concrete temperature have primarily assumed that the concrete is placed in an open environment.Th...Temperature-induced cracking during the construction of mass concrete is a significant concern.Numerical simulations of concrete temperature have primarily assumed that the concrete is placed in an open environment.The problem of heat transfer between the air and concrete has been simplified to the concrete’s heat dissipation boundary.However,in the case of tubular concrete structures,where air inlet and outlet are relatively limited,the internal air temperature does not dissipate promptly to the external environment as it rises.To accurately simulate the temperature and creep stress in tubular concrete structures with enclosed air spaces during construction,we establish an air–concrete coupled heat transfer model according to the principles of conjugate heat transfer,and the accuracy of the model is verified through experiments.Furthermore,we conduct a case study to analyze the impact of airflow within the ship lock corridor on concrete temperature and creep stress.The results demonstrate that enhancing airflow within the corridor can significantly reduce the maximum concrete temperature.Compared with cases in which airflow within the corridor is neglected,the maximum concrete temperature and maximum tensile stress can be reduced by 12.5℃ and 0.7 MPa,respectively,under a wind speed of 4 m/s.The results of the traditional calculation method are relatively close to those obtained at a wind speed of 1 m/s.However,the temperature reduction process in the traditional method is faster,and the method yields greater tensile stress values for the corridor location.展开更多
A comprehensive heat and mass transfer model of dissolution process of non-agglomerated and agglomerated alumina particles was established in an aluminum reduction cell. An appropriate finite difference method was use...A comprehensive heat and mass transfer model of dissolution process of non-agglomerated and agglomerated alumina particles was established in an aluminum reduction cell. An appropriate finite difference method was used to calculate the size dissolution rate, dissolution time and mass of alumina dissolved employing commercial software and custom algorithm based on the shrinking sphere assumption. The effects of some convection and thermal condition parameters on the dissolution process were studied. The calculated results show that the decrease of alumina content or the increase of alumina diffusion coefficient is beneficial for the increase of size dissolution rate and the decrease of dissolution time of non-agglomerated particles. The increase of bath superheat or alumina preheating temperature results in the increase of size dissolution rate and the decrease of dissolution time of agglomerated particles. The calculated dissolution curve of alumina(mass fraction of alumina dissolved) for a 300 k A aluminum reduction cell is in well accordance with the experimental results. The analysis shows that the dissolution process of alumina can be divided into two distinct stages: the fast dissolution stage of non-agglomerated particles and the slow dissolution stage of agglomerated particles, with the dissolution time in the order of 10 and 100 s, respectively. The agglomerated particles were identified to be the most important factor limiting the dissolution process.展开更多
The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper stud...The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper studied the shell-side heat and mass transfer characteristics of vapor-liquid two-phase mixed refrigerants in an SWHE by combining a multi-component model in FLUENT software with a customized multicomponent mass transfer model. Besides, the mathematical model under the sloshing condition was obtained through mathematical derivation, and the corresponding UDF code was loaded into FLUENT as the momentum source term. The results under the sloshing conditions were compared with the relevant parameters under the steady-state condition. The shell-side heat and mass transfer characteristics of the SWHE were investigated by adjusting the component ratio and other working conditions. It was found that the sloshing conditions enhance the heat transfer performance and sometimes have insignificant effects. The sloshing condition is beneficial to reduce the flow resistance. The comprehensive performance of multi-component refrigerants has been improved and the improvement is more significant under sloshing conditions, considering both the heat transfer and pressure drop.These results will provide theoretical support for the research and design of multi-component heat and mass transfer enhancement of LNG SWHE under ocean sloshing conditions.展开更多
In order to predict the pressure drop, collection efficiency, velocity, temperature and mole fraction of vapor in an industrial venturi scrubber with water spraying for converter gas cooling, a three-dimensional model...In order to predict the pressure drop, collection efficiency, velocity, temperature and mole fraction of vapor in an industrial venturi scrubber with water spraying for converter gas cooling, a three-dimensional model of heat and mass transfer with phase change is established. The gas flow and liquid droplets are treated as a continuous phase with a Eulerian approach and as a discrete phase with a Lagrangian approach, respectively. The coupled problem of heat, force, and mass transfers between gas flow and liquid droplets is solved by a commercial computational fluid dynamics(CFD) package, FLUENT. The numerical results show that the water injections have an important influence on the distributions of pressure, velocity, temperature, and mole fraction of vapor, especially for the spraying region in the throat. In the spraying region, the pressure drop is higher and the velocity is lower than in other regions due to the gas-droplet drag, while the temperature is lower because the droplet absorbs large amounts of heat from the high temperature gas and the mole fraction of vapor is higher due to the phase change of the liquid droplet. A number of cases with different Water-to-gas volume flow ratios and baffle openings were simulated. The dependence of pressure drop, velocity, temperature, mole fraction of vapor, and collection efficiency on both the water-to-gas volume flow ratio and baffle opening are analyzed. The good agreements between simulation results and experiment data of pressure drop, temperature, and collection efficiency validate the model. The model should facilitate optimization of the venturi scrubber design in order to give better performance with lower pressure drops and higher collection efficiency.展开更多
Metal additive manufacturing technology has been widely used in prototyping,parts manufacturing and repairing.Metal additive manufacturing is a multi-scale and multi-physical coupling process with complex physical phe...Metal additive manufacturing technology has been widely used in prototyping,parts manufacturing and repairing.Metal additive manufacturing is a multi-scale and multi-physical coupling process with complex physical phenomena of heat and mass transfer and microstructure evolution.It is hard to directly observe the dynamic behavior and microstructure evolution of molten pool during additive manufacturing.Therefore,numerical simulation of additive manufacturing process is significant since it can efficiently and pertinently predict and analyze the physical phenomena in the process of metal additive manufacturing,and provide a reference for technological parameters selection.In this review,the research progress of numerical simulation of metal additive manufacturing is discussed.Various aspects of numerical simulation models are reviewed,including:(1)Introduction of basic control method and physical description of numerical simulation models;(2)Comparison of various heat and mass transfer models based on different physical assumptions(heat conduction model;heat flux coupling model;discrete powder particle heat flux coupling model);(3)Applications of various microstructure evolution models[phase field(PF),cellular automata(CA),and Monte Carlo(MC)].Finally,the development trend of numerical simulation of metal additive manufacturing,including the thermal-flow-solid coupling model and deep learning for numerical model,is analyzed.展开更多
In this article, we have considered the simultaneous influence of ohmic heating and chemical reaction on heat and mass transfer over a stretching sheet. The effects of applied magnetic field are also taken into consid...In this article, we have considered the simultaneous influence of ohmic heating and chemical reaction on heat and mass transfer over a stretching sheet. The effects of applied magnetic field are also taken into consideration while the induced magnetic field is not considered due to very small magnetics Reynolds number. The governing flow problem comprises of momentum, continuity, thermal energy and concentration equation which are transformed into highly nonlinear coupled ordinary differential equations by means of similarity transforms, which are then, solved numerically with the help of Successive Linearization method(SLM) and Chebyshev Spectral collocation method. Numerical values of skin friction coefficient, local Nusselt number, and Sherwood number are also taken into account with the help of tables. The physical influence of the involved parameters of flow velocity, temperature and concentration distribution is discussed and demonstrated graphically. The numerical comparison is also presented with the existing published results and found that the present results are in excellent agreement which also confirms the validity of the present methodology.展开更多
Condensation of humid air along a vertical plate was numerically investigated, with the mathematical model built on the full boundary layer equations and the film-wise condensation assumption. The velocity, heat and m...Condensation of humid air along a vertical plate was numerically investigated, with the mathematical model built on the full boundary layer equations and the film-wise condensation assumption. The velocity, heat and mass transfer characteristics at the gas-liquid interface were numerical analyzed and the results indicated that it was not reasonable to neglect the condensate film from the point of its thickness only. The condensate film thickness, interface temperature drop and the interface tangential velocity affect the physical fields weakly. However, the subcooling and the interface normal velocity were important factors to be considered before the simplification was made. For higher wall temperature, the advective mass transfer contributed much to the total mass transfer. Therefore, the boundary conditions were the key to judge the rationality of neglecting the condensate film for numerical solutions. The numerical results were checked by comparing with experiments and correlations.展开更多
On the basis of the analysis of field thermogeochemical data along abnormal zones of a thermal stream in the Bukhara-Khiva, oil-and-gas region of the Turan (Tegermen, Chagakul, Shimoly Alat, Beshtepa) was succeeded to...On the basis of the analysis of field thermogeochemical data along abnormal zones of a thermal stream in the Bukhara-Khiva, oil-and-gas region of the Turan (Tegermen, Chagakul, Shimoly Alat, Beshtepa) was succeeded to obtain important data on a deep structure of sites. Data of gas-chemical and geothermal observations show about confinedness of abnormal concentration of methane to zones of the increased values of the temperature field the measured values of temperatures (Tegermen Square and others). On geoelectric section mines 2-D of inversion of the MT-field depth of 4000 m are lower, among very high-resistance the chemogenic and carbonate deposits of the Paleozoic is traced the subvertical carrying-out abnormal zone. This zone is identified as the channel of a deep heat and mass transfer with which hydrocarbon (HC) deposits are connected. It is shown that electro-investigation when using a geophysical complex can and has to become “advancing” at exploration by oil and gas.展开更多
The so-called pore network model has great advantages in describing the process of heat and mass transfer in porous media.In order to construct a random two-dimensional(2D)irregular pore network model for an unconsoli...The so-called pore network model has great advantages in describing the process of heat and mass transfer in porous media.In order to construct a random two-dimensional(2D)irregular pore network model for an unconsolidated material,image processing technology was used to extract the required topological and geometric information from a 2D sample of soybean particles,and a dedicated algorithm was elaborated to merge some adjacent small pores.Based on the extracted information,a 2D pore network model including particle information was reconstructed and verified to reflect the pore structure of discrete particles.This method was used to reconstruct a random 2D irregular pore network model of wheat.Accordingly,a multi-scale heat and mass transfer model was implemented to simulate the drying of wheat.The simulation results were consistent with the experimental results,which indicates that the reconstructed irregular pore network model can effectively simulate the real pore structure inside unconsolidated porous media.The present approach may be regarded as the foundation for establishing in the future a three-dimensional pore network model and studying the heat and mass transfer process in a grain pile.展开更多
A self-similar solution of unsteady mixed convection flow on a rotating cone embedded in a porous medium saturated with a rotating fluid in the presence of the first and second orders resistances has been obtained. It...A self-similar solution of unsteady mixed convection flow on a rotating cone embedded in a porous medium saturated with a rotating fluid in the presence of the first and second orders resistances has been obtained. It has been shown that a self-similar solution is possible when the free stream angular velocity and the angular velocity of the cone vary inversely as a linear function of time. The system of ordinary differential equations governing the flow has been solved numerically using an implicit finite difference scheme in combination with the quasi-linearization technique. Both prescribe wall temperature and prescribed heat flux conditions are considered. Numerical results are reported for the skin friction coefficients, Nusselt number and Sherwood number. The effect of various parameters on the velocity, temperature and concentration profiles are also presented here.展开更多
The current investigation aims to explore the combined effects of heat and mass transfer on free convection of Sodium alginate-Fe_(3)O_(4) based Brinkmann type nanofluid flow over a vertical rotating frame.The Tiwari ...The current investigation aims to explore the combined effects of heat and mass transfer on free convection of Sodium alginate-Fe_(3)O_(4) based Brinkmann type nanofluid flow over a vertical rotating frame.The Tiwari and Das nanofluid model is employed to examine the effects of dimensionless numbers,including Grashof,Eckert,and Schmidt numbers and governing parameters like solid volume fraction of nanoparticles,Hall current,magnetic field,viscous dissipation,and the chemical reaction on the physical quantities.The dimensionless nonlinear partial differential equations are solved using a finite difference method known as Runge-Kutta Fehlberg(RKF-45)method.The variation of dimensionless velocity,temperature,concentration,skin friction,heat,and mass transfer rate,as well as for entropy generation and Bejan number with governing parameters,are presented graphically and are provided in tabular form.The results reveal that the Nusselt number increases with an increase in the solid volume fraction of nanoparticles.Furthermore,the rate of entropy generation and Bejan number depends upon the magnetic field and the Eckert number.展开更多
It is of high interest to study laminar flow with mass and heat transfer phenomena that occur in a viscoelastic fluid taken over a vertical plate due to its importance in many technological processes and its increased...It is of high interest to study laminar flow with mass and heat transfer phenomena that occur in a viscoelastic fluid taken over a vertical plate due to its importance in many technological processes and its increased industrial applications.Because of its wide range of applications,this study aims at evaluating the solutions corresponding to Casson fluids’oscillating flow using fractional-derivatives.As it has a combined mass-heat transfer effect,we considered the fluid flow upon an oscillatory infinite vertical-plate.Furthermore,we used two new fractional approaches of fractional derivatives,named AB(Atangana–Baleanu)and CF(Caputo–Fabrizio),on dimensionless governing equations and then we compared their results.The Laplace transformation technique is used to get the most accurate solutions of oscillating motion of any generalized Casson fluid because of the Cosine oscillation passed over the infinite vertical-plate.We obtained and analyzed the distribution of concentration,expressions for the velocity-field and the temperature graphically,using various parameters of interest.We also analyzed the Nusselt number and the skin friction due to their important engineering usage.展开更多
According to modeling simulation and experiments study, the heat and mass transtfer phenomenon.in wood during dring processes was analyzed. The results indicate: at initial stage of drying, moisture movement in wood i...According to modeling simulation and experiments study, the heat and mass transtfer phenomenon.in wood during dring processes was analyzed. The results indicate: at initial stage of drying, moisture movement in wood is due to capillary force, heat transfer is major effect, at end stage, moisture movement in wood is due to diffusive transport, heat transfer is less展开更多
A continuum model and numerical methods were established for description of heat,mass and momentum transfers as well as macrosegregation formations in metallic ingots.Numerical simulation of temperature,composition an...A continuum model and numerical methods were established for description of heat,mass and momentum transfers as well as macrosegregation formations in metallic ingots.Numerical simulation of temperature,composition and liquid flow fields during the solidification of an Al-4.5% Cu ingot were performed on an IBM personal computer.The model and numerical methods were verified through two experiments.展开更多
The function of saturators is to humidify air by bring it into direct contact with water.This process is accomplished by a combination of sensible heat transfer and evaporation of water.The paper discussed mass and he...The function of saturators is to humidify air by bring it into direct contact with water.This process is accomplished by a combination of sensible heat transfer and evaporation of water.The paper discussed mass and heat transfer in saturator and developed mathematical and physical models for saturators.The mathematical model computes one dimensional distributions of air temperatrue,moisture content and the required volume of saturators.The governing equations are solved numerically by a finite difference method.The physical model describes the mass and heat transfer process in the saturator.This paper can provide a mathematical model for saturator design,which is important in designing configurations of HAT cycles.展开更多
The aim of the paper is to investigate the effect of heat and mass transfer on the unsteady magnetohydrodynamic free convective flow with Hall current, heat source, and viscous dissipation. The problem is governed by ...The aim of the paper is to investigate the effect of heat and mass transfer on the unsteady magnetohydrodynamic free convective flow with Hall current, heat source, and viscous dissipation. The problem is governed by the system of coupled non-linear partial differential equations whose exact solution is difficult to obtain. Therefore, the problem is solved by using the Galerkin finite element method. The effects of the various parameters like Hall current, Eckert number, heat source parameter, Prandtl number, and Schmidt number on the velocity components, the temperature, and the concentration are also examined through graphs.展开更多
Heat and mass transfer of a porous permeable wall in a high temperature gas dynamical flow is considered. Numerical simulation is conducted on the ground of the conjugate mathematical model which includes filtration a...Heat and mass transfer of a porous permeable wall in a high temperature gas dynamical flow is considered. Numerical simulation is conducted on the ground of the conjugate mathematical model which includes filtration and heat transfer equations in a porous body and boundary layer equations on its surface. Such an approach enables one to take into account complex interaction between heat and mass transfer in the gasdynamical flow and in the structure subjected to this flow. The main attention is given to the impact of the intraporous heat transfer intensity on the transpiration cooling efficiency.展开更多
Mg-3Ni-2MnO2 nanocomposite is fabricated by mechanical-milling under hydrogen atmosphere with the pressure of 0.5MPa, and heat and mass transfer of reaction bed was measured through the self-made apparatus. The result...Mg-3Ni-2MnO2 nanocomposite is fabricated by mechanical-milling under hydrogen atmosphere with the pressure of 0.5MPa, and heat and mass transfer of reaction bed was measured through the self-made apparatus. The results show that compared with the intrinsic absorption of Mg-3Ni-2MnO2 hydrogen storage material, the accumulated absorption kinetics of the reaction bed behaves so differently. At 150-300℃ during absorption process, the higher the temperature is, the better the intrinsic kinetics behaves. But during the same temperature range, the lower the initial temperature of the reaction bed is, the better the accumulated absorption kinetics is. During the absorption process, the temperature of reaction bed wall is lower than that of center, and the initial temperature has no influence on the highest temperature in the center of the reaction bed . When the reaction is finished, the reaction bed temperature turns to be homogeneous gradually.展开更多
Air Washer are employed in large air-conditioning sys-tems for dust removal and for evaporative cooling withappropriate design which can result in energy saving.Topredict the heat and mass transfer in water spray-air-...Air Washer are employed in large air-conditioning sys-tems for dust removal and for evaporative cooling withappropriate design which can result in energy saving.Topredict the heat and mass transfer in water spray-air-flow system,a two-dimensional numerical model simu-lating the conservation of mass,momentum and energyof air and water are developed.Further,drop trajecto-ries in the case of horizontal parallel flow in air washerhave been simulated.The results of the simulations areused to investigate the effect of the initial droplet size,the spray angle and the airflow velocity on the drop ve-locity field and drop trajectories.展开更多
基金the National Natural Science Foundation of China(No.52125102)the National Key Research and Development Program of China(No.2021YFB4000101)Fundamental Research Funds for t he Central Universities(No.FRF-TP-2021-02C2)。
文摘Attaining a decarbonized and sustainable energy system,which is the core solution to global energy issues,is accessible through the development of hydrogen energy.Proton-exchange membrane water electrolyzers(PEMWEs)are promising devices for hydrogen production,given their high efficiency,rapid responsiveness,and compactness.Bipolar plates account for a relatively high percentage of the total cost and weight compared with other components of PEMWEs.Thus,optimization of their design may accelerate the promotion of PEMWEs.This paper reviews the advances in materials and flow-field design for bipolar plates.First,the working conditions of proton-exchange membrane fuel cells(PEMFCs)and PEMWEs are compared,including reaction direction,operating temperature,pressure,input/output,and potential.Then,the current research status of bipolar-plate substrates and surface coatings is summarized,and some typical channel-rib flow fields and porous flow fields are presented.Furthermore,the effects of materials on mass and heat transfer and the possibility of reducing corrosion by improving the flow field structure are explored.Finally,this review discusses the potential directions of the development of bipolar-plate design,including material fabrication,flow-field geometry optimization using threedimensional printing,and surface-coating composition optimization based on computational materials science.
基金This work was supported by Construction Simulation and Support Optimization of Hydraulic Tunnel Based on Bonded Block-Synthetic Rock Mass Method and Hubei Province Postdoctoral Innovative Practice Position.
文摘Temperature-induced cracking during the construction of mass concrete is a significant concern.Numerical simulations of concrete temperature have primarily assumed that the concrete is placed in an open environment.The problem of heat transfer between the air and concrete has been simplified to the concrete’s heat dissipation boundary.However,in the case of tubular concrete structures,where air inlet and outlet are relatively limited,the internal air temperature does not dissipate promptly to the external environment as it rises.To accurately simulate the temperature and creep stress in tubular concrete structures with enclosed air spaces during construction,we establish an air–concrete coupled heat transfer model according to the principles of conjugate heat transfer,and the accuracy of the model is verified through experiments.Furthermore,we conduct a case study to analyze the impact of airflow within the ship lock corridor on concrete temperature and creep stress.The results demonstrate that enhancing airflow within the corridor can significantly reduce the maximum concrete temperature.Compared with cases in which airflow within the corridor is neglected,the maximum concrete temperature and maximum tensile stress can be reduced by 12.5℃ and 0.7 MPa,respectively,under a wind speed of 4 m/s.The results of the traditional calculation method are relatively close to those obtained at a wind speed of 1 m/s.However,the temperature reduction process in the traditional method is faster,and the method yields greater tensile stress values for the corridor location.
基金Project(2010AA065201)supported by the High-tech Research and Development Program of ChinaProject(2013zzts038)supported by the Fundamental Research Funds for the Central Universities of Central South University,ChinaProject(ZB2011CBBCe1)supported by the Major Program for Aluminum Corporation of China Limited
文摘A comprehensive heat and mass transfer model of dissolution process of non-agglomerated and agglomerated alumina particles was established in an aluminum reduction cell. An appropriate finite difference method was used to calculate the size dissolution rate, dissolution time and mass of alumina dissolved employing commercial software and custom algorithm based on the shrinking sphere assumption. The effects of some convection and thermal condition parameters on the dissolution process were studied. The calculated results show that the decrease of alumina content or the increase of alumina diffusion coefficient is beneficial for the increase of size dissolution rate and the decrease of dissolution time of non-agglomerated particles. The increase of bath superheat or alumina preheating temperature results in the increase of size dissolution rate and the decrease of dissolution time of agglomerated particles. The calculated dissolution curve of alumina(mass fraction of alumina dissolved) for a 300 k A aluminum reduction cell is in well accordance with the experimental results. The analysis shows that the dissolution process of alumina can be divided into two distinct stages: the fast dissolution stage of non-agglomerated particles and the slow dissolution stage of agglomerated particles, with the dissolution time in the order of 10 and 100 s, respectively. The agglomerated particles were identified to be the most important factor limiting the dissolution process.
基金funded by the National Natural Science Foundation of China(No.51806236,No.51806239)the Fundamental Research Funds for the Central Universities(No.2015XKMS059)+1 种基金Shaanxi Postdoctoral Fund Project(No.2018BSHEDZZ56)Foundation of Key Laboratory of Thermo-Fluid Science and Engineering(Xi'an Jiaotong University),Ministry of Education(No.KLTFSE2017KF01)。
文摘The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper studied the shell-side heat and mass transfer characteristics of vapor-liquid two-phase mixed refrigerants in an SWHE by combining a multi-component model in FLUENT software with a customized multicomponent mass transfer model. Besides, the mathematical model under the sloshing condition was obtained through mathematical derivation, and the corresponding UDF code was loaded into FLUENT as the momentum source term. The results under the sloshing conditions were compared with the relevant parameters under the steady-state condition. The shell-side heat and mass transfer characteristics of the SWHE were investigated by adjusting the component ratio and other working conditions. It was found that the sloshing conditions enhance the heat transfer performance and sometimes have insignificant effects. The sloshing condition is beneficial to reduce the flow resistance. The comprehensive performance of multi-component refrigerants has been improved and the improvement is more significant under sloshing conditions, considering both the heat transfer and pressure drop.These results will provide theoretical support for the research and design of multi-component heat and mass transfer enhancement of LNG SWHE under ocean sloshing conditions.
基金supported by Beijing Novel Program, China (Grant No. 2008B16)
文摘In order to predict the pressure drop, collection efficiency, velocity, temperature and mole fraction of vapor in an industrial venturi scrubber with water spraying for converter gas cooling, a three-dimensional model of heat and mass transfer with phase change is established. The gas flow and liquid droplets are treated as a continuous phase with a Eulerian approach and as a discrete phase with a Lagrangian approach, respectively. The coupled problem of heat, force, and mass transfers between gas flow and liquid droplets is solved by a commercial computational fluid dynamics(CFD) package, FLUENT. The numerical results show that the water injections have an important influence on the distributions of pressure, velocity, temperature, and mole fraction of vapor, especially for the spraying region in the throat. In the spraying region, the pressure drop is higher and the velocity is lower than in other regions due to the gas-droplet drag, while the temperature is lower because the droplet absorbs large amounts of heat from the high temperature gas and the mole fraction of vapor is higher due to the phase change of the liquid droplet. A number of cases with different Water-to-gas volume flow ratios and baffle openings were simulated. The dependence of pressure drop, velocity, temperature, mole fraction of vapor, and collection efficiency on both the water-to-gas volume flow ratio and baffle opening are analyzed. The good agreements between simulation results and experiment data of pressure drop, temperature, and collection efficiency validate the model. The model should facilitate optimization of the venturi scrubber design in order to give better performance with lower pressure drops and higher collection efficiency.
基金the National Key R&D Program of China(No.2017YFE0123500 and No.2017YFB1103701)。
文摘Metal additive manufacturing technology has been widely used in prototyping,parts manufacturing and repairing.Metal additive manufacturing is a multi-scale and multi-physical coupling process with complex physical phenomena of heat and mass transfer and microstructure evolution.It is hard to directly observe the dynamic behavior and microstructure evolution of molten pool during additive manufacturing.Therefore,numerical simulation of additive manufacturing process is significant since it can efficiently and pertinently predict and analyze the physical phenomena in the process of metal additive manufacturing,and provide a reference for technological parameters selection.In this review,the research progress of numerical simulation of metal additive manufacturing is discussed.Various aspects of numerical simulation models are reviewed,including:(1)Introduction of basic control method and physical description of numerical simulation models;(2)Comparison of various heat and mass transfer models based on different physical assumptions(heat conduction model;heat flux coupling model;discrete powder particle heat flux coupling model);(3)Applications of various microstructure evolution models[phase field(PF),cellular automata(CA),and Monte Carlo(MC)].Finally,the development trend of numerical simulation of metal additive manufacturing,including the thermal-flow-solid coupling model and deep learning for numerical model,is analyzed.
文摘In this article, we have considered the simultaneous influence of ohmic heating and chemical reaction on heat and mass transfer over a stretching sheet. The effects of applied magnetic field are also taken into consideration while the induced magnetic field is not considered due to very small magnetics Reynolds number. The governing flow problem comprises of momentum, continuity, thermal energy and concentration equation which are transformed into highly nonlinear coupled ordinary differential equations by means of similarity transforms, which are then, solved numerically with the help of Successive Linearization method(SLM) and Chebyshev Spectral collocation method. Numerical values of skin friction coefficient, local Nusselt number, and Sherwood number are also taken into account with the help of tables. The physical influence of the involved parameters of flow velocity, temperature and concentration distribution is discussed and demonstrated graphically. The numerical comparison is also presented with the existing published results and found that the present results are in excellent agreement which also confirms the validity of the present methodology.
基金Supported by the National Basic Research Program of China (2011CB706904) and Beijing Natural Science Foundation (3071001)
文摘Condensation of humid air along a vertical plate was numerically investigated, with the mathematical model built on the full boundary layer equations and the film-wise condensation assumption. The velocity, heat and mass transfer characteristics at the gas-liquid interface were numerical analyzed and the results indicated that it was not reasonable to neglect the condensate film from the point of its thickness only. The condensate film thickness, interface temperature drop and the interface tangential velocity affect the physical fields weakly. However, the subcooling and the interface normal velocity were important factors to be considered before the simplification was made. For higher wall temperature, the advective mass transfer contributed much to the total mass transfer. Therefore, the boundary conditions were the key to judge the rationality of neglecting the condensate film for numerical solutions. The numerical results were checked by comparing with experiments and correlations.
文摘On the basis of the analysis of field thermogeochemical data along abnormal zones of a thermal stream in the Bukhara-Khiva, oil-and-gas region of the Turan (Tegermen, Chagakul, Shimoly Alat, Beshtepa) was succeeded to obtain important data on a deep structure of sites. Data of gas-chemical and geothermal observations show about confinedness of abnormal concentration of methane to zones of the increased values of the temperature field the measured values of temperatures (Tegermen Square and others). On geoelectric section mines 2-D of inversion of the MT-field depth of 4000 m are lower, among very high-resistance the chemogenic and carbonate deposits of the Paleozoic is traced the subvertical carrying-out abnormal zone. This zone is identified as the channel of a deep heat and mass transfer with which hydrocarbon (HC) deposits are connected. It is shown that electro-investigation when using a geophysical complex can and has to become “advancing” at exploration by oil and gas.
基金by the National Natural Science Foundation of China on the project:The construction of 3D pore network of heat and mass transfer model in bulk grain pile(No.31171772).
文摘The so-called pore network model has great advantages in describing the process of heat and mass transfer in porous media.In order to construct a random two-dimensional(2D)irregular pore network model for an unconsolidated material,image processing technology was used to extract the required topological and geometric information from a 2D sample of soybean particles,and a dedicated algorithm was elaborated to merge some adjacent small pores.Based on the extracted information,a 2D pore network model including particle information was reconstructed and verified to reflect the pore structure of discrete particles.This method was used to reconstruct a random 2D irregular pore network model of wheat.Accordingly,a multi-scale heat and mass transfer model was implemented to simulate the drying of wheat.The simulation results were consistent with the experimental results,which indicates that the reconstructed irregular pore network model can effectively simulate the real pore structure inside unconsolidated porous media.The present approach may be regarded as the foundation for establishing in the future a three-dimensional pore network model and studying the heat and mass transfer process in a grain pile.
文摘A self-similar solution of unsteady mixed convection flow on a rotating cone embedded in a porous medium saturated with a rotating fluid in the presence of the first and second orders resistances has been obtained. It has been shown that a self-similar solution is possible when the free stream angular velocity and the angular velocity of the cone vary inversely as a linear function of time. The system of ordinary differential equations governing the flow has been solved numerically using an implicit finite difference scheme in combination with the quasi-linearization technique. Both prescribe wall temperature and prescribed heat flux conditions are considered. Numerical results are reported for the skin friction coefficients, Nusselt number and Sherwood number. The effect of various parameters on the velocity, temperature and concentration profiles are also presented here.
文摘The current investigation aims to explore the combined effects of heat and mass transfer on free convection of Sodium alginate-Fe_(3)O_(4) based Brinkmann type nanofluid flow over a vertical rotating frame.The Tiwari and Das nanofluid model is employed to examine the effects of dimensionless numbers,including Grashof,Eckert,and Schmidt numbers and governing parameters like solid volume fraction of nanoparticles,Hall current,magnetic field,viscous dissipation,and the chemical reaction on the physical quantities.The dimensionless nonlinear partial differential equations are solved using a finite difference method known as Runge-Kutta Fehlberg(RKF-45)method.The variation of dimensionless velocity,temperature,concentration,skin friction,heat,and mass transfer rate,as well as for entropy generation and Bejan number with governing parameters,are presented graphically and are provided in tabular form.The results reveal that the Nusselt number increases with an increase in the solid volume fraction of nanoparticles.Furthermore,the rate of entropy generation and Bejan number depends upon the magnetic field and the Eckert number.
文摘It is of high interest to study laminar flow with mass and heat transfer phenomena that occur in a viscoelastic fluid taken over a vertical plate due to its importance in many technological processes and its increased industrial applications.Because of its wide range of applications,this study aims at evaluating the solutions corresponding to Casson fluids’oscillating flow using fractional-derivatives.As it has a combined mass-heat transfer effect,we considered the fluid flow upon an oscillatory infinite vertical-plate.Furthermore,we used two new fractional approaches of fractional derivatives,named AB(Atangana–Baleanu)and CF(Caputo–Fabrizio),on dimensionless governing equations and then we compared their results.The Laplace transformation technique is used to get the most accurate solutions of oscillating motion of any generalized Casson fluid because of the Cosine oscillation passed over the infinite vertical-plate.We obtained and analyzed the distribution of concentration,expressions for the velocity-field and the temperature graphically,using various parameters of interest.We also analyzed the Nusselt number and the skin friction due to their important engineering usage.
文摘According to modeling simulation and experiments study, the heat and mass transtfer phenomenon.in wood during dring processes was analyzed. The results indicate: at initial stage of drying, moisture movement in wood is due to capillary force, heat transfer is major effect, at end stage, moisture movement in wood is due to diffusive transport, heat transfer is less
文摘A continuum model and numerical methods were established for description of heat,mass and momentum transfers as well as macrosegregation formations in metallic ingots.Numerical simulation of temperature,composition and liquid flow fields during the solidification of an Al-4.5% Cu ingot were performed on an IBM personal computer.The model and numerical methods were verified through two experiments.
文摘The function of saturators is to humidify air by bring it into direct contact with water.This process is accomplished by a combination of sensible heat transfer and evaporation of water.The paper discussed mass and heat transfer in saturator and developed mathematical and physical models for saturators.The mathematical model computes one dimensional distributions of air temperatrue,moisture content and the required volume of saturators.The governing equations are solved numerically by a finite difference method.The physical model describes the mass and heat transfer process in the saturator.This paper can provide a mathematical model for saturator design,which is important in designing configurations of HAT cycles.
基金supported by the University Grants Commission,New Delhi,India
文摘The aim of the paper is to investigate the effect of heat and mass transfer on the unsteady magnetohydrodynamic free convective flow with Hall current, heat source, and viscous dissipation. The problem is governed by the system of coupled non-linear partial differential equations whose exact solution is difficult to obtain. Therefore, the problem is solved by using the Galerkin finite element method. The effects of the various parameters like Hall current, Eckert number, heat source parameter, Prandtl number, and Schmidt number on the velocity components, the temperature, and the concentration are also examined through graphs.
基金The project supported by the National Natural Science Foundation of China (19889209)Russian Foundation for Basic Research (97-02-16943)
文摘Heat and mass transfer of a porous permeable wall in a high temperature gas dynamical flow is considered. Numerical simulation is conducted on the ground of the conjugate mathematical model which includes filtration and heat transfer equations in a porous body and boundary layer equations on its surface. Such an approach enables one to take into account complex interaction between heat and mass transfer in the gasdynamical flow and in the structure subjected to this flow. The main attention is given to the impact of the intraporous heat transfer intensity on the transpiration cooling efficiency.
文摘Mg-3Ni-2MnO2 nanocomposite is fabricated by mechanical-milling under hydrogen atmosphere with the pressure of 0.5MPa, and heat and mass transfer of reaction bed was measured through the self-made apparatus. The results show that compared with the intrinsic absorption of Mg-3Ni-2MnO2 hydrogen storage material, the accumulated absorption kinetics of the reaction bed behaves so differently. At 150-300℃ during absorption process, the higher the temperature is, the better the intrinsic kinetics behaves. But during the same temperature range, the lower the initial temperature of the reaction bed is, the better the accumulated absorption kinetics is. During the absorption process, the temperature of reaction bed wall is lower than that of center, and the initial temperature has no influence on the highest temperature in the center of the reaction bed . When the reaction is finished, the reaction bed temperature turns to be homogeneous gradually.
文摘Air Washer are employed in large air-conditioning sys-tems for dust removal and for evaporative cooling withappropriate design which can result in energy saving.Topredict the heat and mass transfer in water spray-air-flow system,a two-dimensional numerical model simu-lating the conservation of mass,momentum and energyof air and water are developed.Further,drop trajecto-ries in the case of horizontal parallel flow in air washerhave been simulated.The results of the simulations areused to investigate the effect of the initial droplet size,the spray angle and the airflow velocity on the drop ve-locity field and drop trajectories.