Based on the artificial intelligence algorithm of RetinaNet,we propose the Ghost-RetinaNet in this paper,a fast shadow detection method for photovoltaic panels,to solve the problems of extreme target density,large ove...Based on the artificial intelligence algorithm of RetinaNet,we propose the Ghost-RetinaNet in this paper,a fast shadow detection method for photovoltaic panels,to solve the problems of extreme target density,large overlap,high cost and poor real-time performance in photovoltaic panel shadow detection.Firstly,the Ghost CSP module based on Cross Stage Partial(CSP)is adopted in feature extraction network to improve the accuracy and detection speed.Based on extracted features,recursive feature fusion structure ismentioned to enhance the feature information of all objects.We introduce the SiLU activation function and CIoU Loss to increase the learning and generalization ability of the network and improve the positioning accuracy of the bounding box regression,respectively.Finally,in order to achieve fast detection,the Ghost strategy is chosen to lighten the size of the algorithm.The results of the experiment show that the average detection accuracy(mAP)of the algorithm can reach up to 97.17%,the model size is only 8.75 MB and the detection speed is highly up to 50.8 Frame per second(FPS),which can meet the requirements of real-time detection speed and accuracy of photovoltaic panels in the practical environment.The realization of the algorithm also provides new research methods and ideas for fault detection in the photovoltaic power generation system.展开更多
In this paper, we have evaluated a bidirectional wavelength division multiplexing passive optical network(WDM-PON) employing intensity modulated/direct detection optical orthogonal frequency division multiplexing(IM/D...In this paper, we have evaluated a bidirectional wavelength division multiplexing passive optical network(WDM-PON) employing intensity modulated/direct detection optical orthogonal frequency division multiplexing(IM/DD-OFDM). The proposed system employs 100 Gbit/s 16 quadrature amplitude modulation(16-QAM) downstream and 5 Gbit/s on-off keying(OOK) upstream wavelengths, respectively. The proposed system is considered low-cost as non-coherent IM/DD OFDM technology and a simple reflective semiconductor optical amplifier(RSOA) colorless transmitter are employed and no dispersion compensating fiber(DCF) is needed. Based on the bit error rate(BER) results of WDM signals, the proposed WDM-PON system can achieve up to 1.6 Tbit/s(100 Gbit/s/λ × 16 wavelengths) downstream transmission over a 30 km single mode fiber(SMF).展开更多
High resolution of surface plasmon resonance (SPR) detection is of vital importance.SPR biosensing system resolution is determined by intrinsic sensitivity of biochip and light signal acquisition system.In this articl...High resolution of surface plasmon resonance (SPR) detection is of vital importance.SPR biosensing system resolution is determined by intrinsic sensitivity of biochip and light signal acquisition system.In this article,different signal acquisition system resolutions on photodetector were analyzed based on light intensity and phase detection.Result shows that charge coupled device (CCD) with larger numbers of pixels is potential to achieve higher detection resolution.A 64 pixel line array CCD and a 12 bit ADC can achieve resolution of 10^(-7) refractive index unit (RIU).In array detection mode,increasing of detection throughput is at the cost of decreasing system resolution.Simulation analysis indicates that,if noise is taken into account,phase modulation methods are capable of providing better noise reduction performance than intensity methods.展开更多
A digital transmission system with 900 MHz bandwidth and over 40 dB linear dynamic range for high intensity pulsed radial detection is designed. The transient signals (with a subnanoseconds rising edge) from the det...A digital transmission system with 900 MHz bandwidth and over 40 dB linear dynamic range for high intensity pulsed radial detection is designed. The transient signals (with a subnanoseconds rising edge) from the detectors can be transmitted to diagnosing systems kilometers away with high fidelity. It can adapt to interference and a hostile detecting environment by using the intelligent functions of this system. The feasibility and reliability of this system is verified by system evaluation tests.展开更多
A general formula for the dispersion limit of single-mode-fiber IM/DD (Intensity Modulation /Direct Detection) systems is derived for arbitrary given normalized pulse width P, eye opening penalty X and source linewidt...A general formula for the dispersion limit of single-mode-fiber IM/DD (Intensity Modulation /Direct Detection) systems is derived for arbitrary given normalized pulse width P, eye opening penalty X and source linewidth enchancement factor α. From the comparison with published theoretical results, computer simulation and experimental data, its validity and convenience in system design and evaluation are shown. Using this simple and general formula, one can easily obtain the dispersion limit of various fiber types under different working conditions in IM/DD systems.展开更多
In this paper,we propose an EADO-OFDM(Enhanced Asymmetrically Clipped DC Biased Optical Orthogonal Frequency Division Multiplexing)method for IM/DD(Intensity-Modulated DirectDetection)optical systems,in which the AV-D...In this paper,we propose an EADO-OFDM(Enhanced Asymmetrically Clipped DC Biased Optical Orthogonal Frequency Division Multiplexing)method for IM/DD(Intensity-Modulated DirectDetection)optical systems,in which the AV-DCO-OFDM(Absolute Valued DC Biased Optical OFDM)symbols on the even subcarriers and ACO-OFDM(Asymmetrically Clipped Optical OFDM)symbols on the odd subcarriers are combined for simultaneous transmission.Moreover,we discuss the PDF(Probability Density Function)and electrical SNR(Signal to Noise Ratio)of the symbols,which are utilized to estimate the BER(Bit Error Ratio)performance and overall performance of EADO-OFDM.The Monte Carlo simulation results have validated the theoretical analysis and have also confirmed the EADO-OFDM is attractive considering the following benefits.Firstly,EADO-OFDM is more energy efficient compared to the power-efficient DCO-OFDM(DC Biased Optical OFDM),since the required DC bias is smaller when appropriate constellation size combinations are chosen.In addition,EADO-OFDM performs better than the conventional ADO-OFDM(Asymmetrically Clipped DC Biased Optical OFDM),because the absolute value operation causes no clipping distortion.展开更多
基金supported by the National Natural Science Foundation of China(No.52074305)Henan Scientific and Technological Research Project(No.212102210005)Open Fund of Henan Engineering Laboratory for Photoelectric Sensing and Intelligent Measurement and Control(No.HELPSIMC-2020-00X).
文摘Based on the artificial intelligence algorithm of RetinaNet,we propose the Ghost-RetinaNet in this paper,a fast shadow detection method for photovoltaic panels,to solve the problems of extreme target density,large overlap,high cost and poor real-time performance in photovoltaic panel shadow detection.Firstly,the Ghost CSP module based on Cross Stage Partial(CSP)is adopted in feature extraction network to improve the accuracy and detection speed.Based on extracted features,recursive feature fusion structure ismentioned to enhance the feature information of all objects.We introduce the SiLU activation function and CIoU Loss to increase the learning and generalization ability of the network and improve the positioning accuracy of the bounding box regression,respectively.Finally,in order to achieve fast detection,the Ghost strategy is chosen to lighten the size of the algorithm.The results of the experiment show that the average detection accuracy(mAP)of the algorithm can reach up to 97.17%,the model size is only 8.75 MB and the detection speed is highly up to 50.8 Frame per second(FPS),which can meet the requirements of real-time detection speed and accuracy of photovoltaic panels in the practical environment.The realization of the algorithm also provides new research methods and ideas for fault detection in the photovoltaic power generation system.
基金supported by the Erciyes University Scientific Research Projects Coordination Unit (No.FDK-2019-8750)。
文摘In this paper, we have evaluated a bidirectional wavelength division multiplexing passive optical network(WDM-PON) employing intensity modulated/direct detection optical orthogonal frequency division multiplexing(IM/DD-OFDM). The proposed system employs 100 Gbit/s 16 quadrature amplitude modulation(16-QAM) downstream and 5 Gbit/s on-off keying(OOK) upstream wavelengths, respectively. The proposed system is considered low-cost as non-coherent IM/DD OFDM technology and a simple reflective semiconductor optical amplifier(RSOA) colorless transmitter are employed and no dispersion compensating fiber(DCF) is needed. Based on the bit error rate(BER) results of WDM signals, the proposed WDM-PON system can achieve up to 1.6 Tbit/s(100 Gbit/s/λ × 16 wavelengths) downstream transmission over a 30 km single mode fiber(SMF).
文摘High resolution of surface plasmon resonance (SPR) detection is of vital importance.SPR biosensing system resolution is determined by intrinsic sensitivity of biochip and light signal acquisition system.In this article,different signal acquisition system resolutions on photodetector were analyzed based on light intensity and phase detection.Result shows that charge coupled device (CCD) with larger numbers of pixels is potential to achieve higher detection resolution.A 64 pixel line array CCD and a 12 bit ADC can achieve resolution of 10^(-7) refractive index unit (RIU).In array detection mode,increasing of detection throughput is at the cost of decreasing system resolution.Simulation analysis indicates that,if noise is taken into account,phase modulation methods are capable of providing better noise reduction performance than intensity methods.
基金Supported by National High Technology Research and Development Program of China(2007AA01Z275 )
文摘A digital transmission system with 900 MHz bandwidth and over 40 dB linear dynamic range for high intensity pulsed radial detection is designed. The transient signals (with a subnanoseconds rising edge) from the detectors can be transmitted to diagnosing systems kilometers away with high fidelity. It can adapt to interference and a hostile detecting environment by using the intelligent functions of this system. The feasibility and reliability of this system is verified by system evaluation tests.
基金the High Technology Research and Development Programme of China
文摘A general formula for the dispersion limit of single-mode-fiber IM/DD (Intensity Modulation /Direct Detection) systems is derived for arbitrary given normalized pulse width P, eye opening penalty X and source linewidth enchancement factor α. From the comparison with published theoretical results, computer simulation and experimental data, its validity and convenience in system design and evaluation are shown. Using this simple and general formula, one can easily obtain the dispersion limit of various fiber types under different working conditions in IM/DD systems.
基金supported in part by National Key Basic Research Program of China(No.2013CB329200)in part by Shenzhen Subject Arrangements(No.JCYJ20160331184124954)+4 种基金in part by Shenzhen Peacock Plan(No.1108170036003286)in part by Guangdong Science and Technology Planning Project(No.2014B010120001)in part by Shenzhen Fundamental Research Project(No.JCYJ20150401112337177)in part by Shenzhen Visible Light Communication System Key Laboratory(No.ZDSYS20140512114229398)in part by EPSRC Funded Projects(EP/N004558/1,EP/N023862/1).
文摘In this paper,we propose an EADO-OFDM(Enhanced Asymmetrically Clipped DC Biased Optical Orthogonal Frequency Division Multiplexing)method for IM/DD(Intensity-Modulated DirectDetection)optical systems,in which the AV-DCO-OFDM(Absolute Valued DC Biased Optical OFDM)symbols on the even subcarriers and ACO-OFDM(Asymmetrically Clipped Optical OFDM)symbols on the odd subcarriers are combined for simultaneous transmission.Moreover,we discuss the PDF(Probability Density Function)and electrical SNR(Signal to Noise Ratio)of the symbols,which are utilized to estimate the BER(Bit Error Ratio)performance and overall performance of EADO-OFDM.The Monte Carlo simulation results have validated the theoretical analysis and have also confirmed the EADO-OFDM is attractive considering the following benefits.Firstly,EADO-OFDM is more energy efficient compared to the power-efficient DCO-OFDM(DC Biased Optical OFDM),since the required DC bias is smaller when appropriate constellation size combinations are chosen.In addition,EADO-OFDM performs better than the conventional ADO-OFDM(Asymmetrically Clipped DC Biased Optical OFDM),because the absolute value operation causes no clipping distortion.