This paper introduces a multi-model approach to design a robust supplementary damping controller. The designed fixed-order supplementary damping controller adjusts the voltage reference set point of SVC. There are two...This paper introduces a multi-model approach to design a robust supplementary damping controller. The designed fixed-order supplementary damping controller adjusts the voltage reference set point of SVC. There are two main objectives of the controller design, damping low frequencies oscillations and enhancing power system stability. This method relies on shaping the closed-loop sensitivity functions in the Nyquist plot under the constraints of these functions. These constraints can be linearized by choosing a desired open-loop transfer function. The robust controller is designed to minimize the error between the open-loop of the original plant model and the desired transfer functions. These outcomes can be achieved by using convex optimization methods. Convexity of the problem formulation ensures global optimality. One of the advantages of the proposed approach is that the approach accounts for multi-model uncertainty. In contrast to the methods available in the literature, the proposed approach deals with full-order model (i.e., model reduction is not required) with lower controller order. The issue of time delay of feedback signals has been addressed in this paper for different values of time delay by applying a multi-model optimization technique. The proposed approach is compared to other existing techniques to design a robust controller which is based on H2 under pole placement. Both techniques are applied to the 68-bus system to evaluate and validate the robust controller performance under different load scenarios and different wind generations.展开更多
As a consequence of interconnections of large power systems electromechanical oscillations appear being known as inter area oscillations. In order to suppress such inter area oscillations, a FACTS device is conceive...As a consequence of interconnections of large power systems electromechanical oscillations appear being known as inter area oscillations. In order to suppress such inter area oscillations, a FACTS device is conceived which is designed on the basis of the analogy between the transmission line model and a longitudinal electromechanical model. The damping action is based on the phenomenon of impedance matching of the transmission line model. Modelling of the overall system, optimal placement and control strategy are being treated. A realistic 420kV longitudinal model and a complex power system model are used for simulation. In the simulation, the time response of this device and the effect of this device even under limiting conditions are studied. The results show that this device suppresses the inter area oscillations effectively.展开更多
In this paper, a delay-dependent anti-windup compensator is designed for wide-area power systems to enhance the damping of inter-area low-frequency oscillations in the presence of time-varying delays and actuator satu...In this paper, a delay-dependent anti-windup compensator is designed for wide-area power systems to enhance the damping of inter-area low-frequency oscillations in the presence of time-varying delays and actuator saturation using an indirect approach. In this approach, first, a conventional wide-area damping controller is designed by using output feedback with regional pole placement approach without considering time-varying delays and actuator saturation. Then to mitigate the effect of both time-varying delays and actuator saturation, an add-on delay-dependent anti-windup compensator is designed. Based on generalized sector conditions, less conservative delay-dependent sufficient conditions are derived in the form of a linear matrix inequality(LMI) to guarantee the asymptotic stability of the closedloop system in the presence of time-varying delays and actuator saturation by using Lyapunov-Krasovskii functional and Jensen integral inequality. Based on sufficient conditions, the LMI-based optimization problem is formulated and solved to obtain the compensator gain which maximizes the estimation of the region of attraction and minimizes the upper bound of-gain. Nonlinear simulations are performed first using MATLAB/Simulink on a two-area four-machine power system to evaluate the performance of the proposed controller for two operating conditions, e.g.,3-phase to ground fault and generator 1 terminal voltage variation. Then the proposed controller is implemented in real-time on an OPAL-RT digital simulator. From the results obtained it is verified that the proposed controller provides sufficient damping to the inter-area oscillations in the presence of time-varying delays and actuator saturation and maximizes the estimation of the region of attraction.展开更多
Inter-area low frequency oscillation in power system is one of the major problems for bulk power transmission through weak tie lines.Use of wide-area signal is more effective than the local area signal in damping out ...Inter-area low frequency oscillation in power system is one of the major problems for bulk power transmission through weak tie lines.Use of wide-area signal is more effective than the local area signal in damping out the inter-area oscillations.Wide area measurement system(WAMS)is convenient to transmit the wide area signal through the communication channel to the remote location.Communication failure is one of the disastrous phenomena in a communication channel.In this paper,a dual input single output(DISO)Hm controller is designed to build the control resiliency by employing two highest observability ranking wide area signals with respect to the critical damping inter-area mode.The proposed controller can provide sufficient damping to the system and also the system remains stabilized if one of the wide-area signals is lost.The time delay is an unwanted phenomenon that degrades the performance of the controllers.The unified Smith predictor approach is used to design a Hm controller to handle the time delay.Kundur's two-area and IEEE-39 bus test systems are considered to verify the effectiveness of the proposed controller.From the simulation results,it is verified that,the proposed controller provides excellent damping performance at normal communication and improves the controller resiliency to counteract the communication failure.展开更多
This paper presents a procedure for designing a supplementary damping stabilizer for a static synchronous series compensator(SSSC) in multi-machine power systems.The objective is to shift the lightly damped inter-area...This paper presents a procedure for designing a supplementary damping stabilizer for a static synchronous series compensator(SSSC) in multi-machine power systems.The objective is to shift the lightly damped inter-area modes toward the prescribed stability region.A lead-lag stabilizer is used to demonstrate this technique,in which a particular measure of stabilizer gain is considered as an objective function.Constraints of the problem for phase-lead and lag structures are derived.The objective function with the constraints is formed as a quadratic mathematical programming problem.For robust design,the parameters of the stabilizer are calculated under various operating conditions.Two types of SSSC-based stabilizer have been presented and designed.Numerical results including eigenvalue analysis and the nonlinear simulations on the 4-and 50-machine power systems are pre-sented to show the effectiveness of the proposed method.展开更多
随着调速系统技术的不断发展,调速系统对电网低频振荡(low frequency oscillation,LFO)的影响越来越引起人们的关注。现有理论研究表明,调速系统不仅会影响电网LFO阻尼特性,还会向电网引入一个独特的比LFO频率更低的振荡模态,该文称为...随着调速系统技术的不断发展,调速系统对电网低频振荡(low frequency oscillation,LFO)的影响越来越引起人们的关注。现有理论研究表明,调速系统不仅会影响电网LFO阻尼特性,还会向电网引入一个独特的比LFO频率更低的振荡模态,该文称为频率模态,该模态会在调速系统动作时出现。该文首先采用转矩分析理论研究了调速系统对电网LFO阻尼特性的影响。然后以4机2区域系统为例,重点分析了频率模态的特点及其对LFO的影响,分析结果表明:频率模态是调速系统自身的一种控制模态,其阻尼比主要受调速比例–积分–微分控制器的参数影响;考虑到调速系统动作死区影响,在系统发生LFO且调速系统使该LFO阻尼为负的情况下,当频率模态阻尼较强时,电网功率LFO发散后会逐渐变为等幅振荡;而当频率模态阻尼较弱,电网功率LFO将会呈现出类似"拍频"的特性。最后,通过某实际互联电力系统仿真验证了上述分析结果的有效性。展开更多
文摘This paper introduces a multi-model approach to design a robust supplementary damping controller. The designed fixed-order supplementary damping controller adjusts the voltage reference set point of SVC. There are two main objectives of the controller design, damping low frequencies oscillations and enhancing power system stability. This method relies on shaping the closed-loop sensitivity functions in the Nyquist plot under the constraints of these functions. These constraints can be linearized by choosing a desired open-loop transfer function. The robust controller is designed to minimize the error between the open-loop of the original plant model and the desired transfer functions. These outcomes can be achieved by using convex optimization methods. Convexity of the problem formulation ensures global optimality. One of the advantages of the proposed approach is that the approach accounts for multi-model uncertainty. In contrast to the methods available in the literature, the proposed approach deals with full-order model (i.e., model reduction is not required) with lower controller order. The issue of time delay of feedback signals has been addressed in this paper for different values of time delay by applying a multi-model optimization technique. The proposed approach is compared to other existing techniques to design a robust controller which is based on H2 under pole placement. Both techniques are applied to the 68-bus system to evaluate and validate the robust controller performance under different load scenarios and different wind generations.
文摘As a consequence of interconnections of large power systems electromechanical oscillations appear being known as inter area oscillations. In order to suppress such inter area oscillations, a FACTS device is conceived which is designed on the basis of the analogy between the transmission line model and a longitudinal electromechanical model. The damping action is based on the phenomenon of impedance matching of the transmission line model. Modelling of the overall system, optimal placement and control strategy are being treated. A realistic 420kV longitudinal model and a complex power system model are used for simulation. In the simulation, the time response of this device and the effect of this device even under limiting conditions are studied. The results show that this device suppresses the inter area oscillations effectively.
文摘In this paper, a delay-dependent anti-windup compensator is designed for wide-area power systems to enhance the damping of inter-area low-frequency oscillations in the presence of time-varying delays and actuator saturation using an indirect approach. In this approach, first, a conventional wide-area damping controller is designed by using output feedback with regional pole placement approach without considering time-varying delays and actuator saturation. Then to mitigate the effect of both time-varying delays and actuator saturation, an add-on delay-dependent anti-windup compensator is designed. Based on generalized sector conditions, less conservative delay-dependent sufficient conditions are derived in the form of a linear matrix inequality(LMI) to guarantee the asymptotic stability of the closedloop system in the presence of time-varying delays and actuator saturation by using Lyapunov-Krasovskii functional and Jensen integral inequality. Based on sufficient conditions, the LMI-based optimization problem is formulated and solved to obtain the compensator gain which maximizes the estimation of the region of attraction and minimizes the upper bound of-gain. Nonlinear simulations are performed first using MATLAB/Simulink on a two-area four-machine power system to evaluate the performance of the proposed controller for two operating conditions, e.g.,3-phase to ground fault and generator 1 terminal voltage variation. Then the proposed controller is implemented in real-time on an OPAL-RT digital simulator. From the results obtained it is verified that the proposed controller provides sufficient damping to the inter-area oscillations in the presence of time-varying delays and actuator saturation and maximizes the estimation of the region of attraction.
基金support by the Central Power Research Institute,India(CPRI/RD/RSOP/GRANT/2015)
文摘Inter-area low frequency oscillation in power system is one of the major problems for bulk power transmission through weak tie lines.Use of wide-area signal is more effective than the local area signal in damping out the inter-area oscillations.Wide area measurement system(WAMS)is convenient to transmit the wide area signal through the communication channel to the remote location.Communication failure is one of the disastrous phenomena in a communication channel.In this paper,a dual input single output(DISO)Hm controller is designed to build the control resiliency by employing two highest observability ranking wide area signals with respect to the critical damping inter-area mode.The proposed controller can provide sufficient damping to the system and also the system remains stabilized if one of the wide-area signals is lost.The time delay is an unwanted phenomenon that degrades the performance of the controllers.The unified Smith predictor approach is used to design a Hm controller to handle the time delay.Kundur's two-area and IEEE-39 bus test systems are considered to verify the effectiveness of the proposed controller.From the simulation results,it is verified that,the proposed controller provides excellent damping performance at normal communication and improves the controller resiliency to counteract the communication failure.
文摘This paper presents a procedure for designing a supplementary damping stabilizer for a static synchronous series compensator(SSSC) in multi-machine power systems.The objective is to shift the lightly damped inter-area modes toward the prescribed stability region.A lead-lag stabilizer is used to demonstrate this technique,in which a particular measure of stabilizer gain is considered as an objective function.Constraints of the problem for phase-lead and lag structures are derived.The objective function with the constraints is formed as a quadratic mathematical programming problem.For robust design,the parameters of the stabilizer are calculated under various operating conditions.Two types of SSSC-based stabilizer have been presented and designed.Numerical results including eigenvalue analysis and the nonlinear simulations on the 4-and 50-machine power systems are pre-sented to show the effectiveness of the proposed method.
文摘随着调速系统技术的不断发展,调速系统对电网低频振荡(low frequency oscillation,LFO)的影响越来越引起人们的关注。现有理论研究表明,调速系统不仅会影响电网LFO阻尼特性,还会向电网引入一个独特的比LFO频率更低的振荡模态,该文称为频率模态,该模态会在调速系统动作时出现。该文首先采用转矩分析理论研究了调速系统对电网LFO阻尼特性的影响。然后以4机2区域系统为例,重点分析了频率模态的特点及其对LFO的影响,分析结果表明:频率模态是调速系统自身的一种控制模态,其阻尼比主要受调速比例–积分–微分控制器的参数影响;考虑到调速系统动作死区影响,在系统发生LFO且调速系统使该LFO阻尼为负的情况下,当频率模态阻尼较强时,电网功率LFO发散后会逐渐变为等幅振荡;而当频率模态阻尼较弱,电网功率LFO将会呈现出类似"拍频"的特性。最后,通过某实际互联电力系统仿真验证了上述分析结果的有效性。