To mitigate interference on celledge users and improve fairness of the whole system, dynamic inter-cell interference coordination(ICIC) is one of the promising solutions. However, traditional dynamic ICIC is considere...To mitigate interference on celledge users and improve fairness of the whole system, dynamic inter-cell interference coordination(ICIC) is one of the promising solutions. However, traditional dynamic ICIC is considered as an NP-hard problem and power variability further adds another dimension to this joint optimization issue, making it even more difficult to quickly reach a near-optimal solution. Therefore, we theoretically obtain the closed-form expression of the near-optimal power allocation ratio for users in adjacent cells paired in the same resource block and interfere each other, so that the total utility corresponding to α-fairness is maximized. Dynamic ICIC using this closed-form solution could improve user fairness without causing an increment of the computational complexity. Numerical results show that, compared with the schemes using identical power for different users, our method does not obviously degrade the system's average spectral efficiency.展开更多
As a new technology, coordinated multipoint (CoMP) transmission is included in LTE-Advanced study item. Moreover, the network architecture in LTE-Advanced system is modified to take into account coordinated transmis...As a new technology, coordinated multipoint (CoMP) transmission is included in LTE-Advanced study item. Moreover, the network architecture in LTE-Advanced system is modified to take into account coordinated transmission. Under this background, a novel power allocation game model is established to mitigate inter-cell interference with cellular coordination. In the light of cellular cooperation relationship and centralized control in eNodeB, the power allocation in each served antenna unit aims to make signal to interference plus noise ratio (SINR) balanced among inter-cells. Through the proposed power allocation game algorithm, the users' SINR can reach the Nash equilibrium, making it feasible to reduce the co-frequency interference by decreasing the transmitted power. Numerical results show that the proposed power allocation algorithm improves the throughput both in cell-center and cell-edge. Moreover, the blocking rate in cell-edge is reduced too.展开更多
针对LTE-A(long term evolution-advanced)中继系统存在的干扰问题,提出一种基于小区间干扰协调(inter cell interference coordination,ICIC)的资源分配算法。该算法利用LTE-A网络里各个小区基站之间的交互信息,得到邻小区资源块(resou...针对LTE-A(long term evolution-advanced)中继系统存在的干扰问题,提出一种基于小区间干扰协调(inter cell interference coordination,ICIC)的资源分配算法。该算法利用LTE-A网络里各个小区基站之间的交互信息,得到邻小区资源块(resource block,RB)的使用状况,将空闲率最大的资源块分配给信道增益最大的用户,从而在满足用户业务需求的前提下提高小区吞吐量。仿真结果表明,该算法优于传统的SSA(separate and sequential allocation)算法,系统整体性能得到提升。展开更多
基金supported by the National Natural Science Foundation of China under Grant No. 61501160supported by the Fundamental Research Funds for the Central Universities of China under Grant No. 2015HGCH0013
文摘To mitigate interference on celledge users and improve fairness of the whole system, dynamic inter-cell interference coordination(ICIC) is one of the promising solutions. However, traditional dynamic ICIC is considered as an NP-hard problem and power variability further adds another dimension to this joint optimization issue, making it even more difficult to quickly reach a near-optimal solution. Therefore, we theoretically obtain the closed-form expression of the near-optimal power allocation ratio for users in adjacent cells paired in the same resource block and interfere each other, so that the total utility corresponding to α-fairness is maximized. Dynamic ICIC using this closed-form solution could improve user fairness without causing an increment of the computational complexity. Numerical results show that, compared with the schemes using identical power for different users, our method does not obviously degrade the system's average spectral efficiency.
基金Supported by the Sino-Swedish Project (Grant No. 2008DFA12110)the Key Project of Beijing Municipal Science & Technology Commission(Grant No. D08080100620802)+2 种基金the National Science and Technology Special Project "IMT-Advanced Open Key Technology Research (GroupCell Structure)"(Grant No. 2009ZX03003-011)the National Natural Science Foundation of China (Grant No. 60872048)the NationalKey Basic Research Program of China (Grant No. 2009CB320407)
文摘As a new technology, coordinated multipoint (CoMP) transmission is included in LTE-Advanced study item. Moreover, the network architecture in LTE-Advanced system is modified to take into account coordinated transmission. Under this background, a novel power allocation game model is established to mitigate inter-cell interference with cellular coordination. In the light of cellular cooperation relationship and centralized control in eNodeB, the power allocation in each served antenna unit aims to make signal to interference plus noise ratio (SINR) balanced among inter-cells. Through the proposed power allocation game algorithm, the users' SINR can reach the Nash equilibrium, making it feasible to reduce the co-frequency interference by decreasing the transmitted power. Numerical results show that the proposed power allocation algorithm improves the throughput both in cell-center and cell-edge. Moreover, the blocking rate in cell-edge is reduced too.
文摘针对LTE-A(long term evolution-advanced)中继系统存在的干扰问题,提出一种基于小区间干扰协调(inter cell interference coordination,ICIC)的资源分配算法。该算法利用LTE-A网络里各个小区基站之间的交互信息,得到邻小区资源块(resource block,RB)的使用状况,将空闲率最大的资源块分配给信道增益最大的用户,从而在满足用户业务需求的前提下提高小区吞吐量。仿真结果表明,该算法优于传统的SSA(separate and sequential allocation)算法,系统整体性能得到提升。