This work proposes an alternative strategy to the use of a speed sensor in <span style="white-space:normal;font-size:10pt;font-family:;" "="">the implementation of active and reactive po...This work proposes an alternative strategy to the use of a speed sensor in <span style="white-space:normal;font-size:10pt;font-family:;" "="">the implementation of active and reactive power based model reference adaptive system (PQ-MRAS) estimator in order to calculate the rotor and stator resistances of an induction motor (IM) and the use of these parameters for the detection of inter-turn short circuits (ITSC) faults in the stator of this motor. The rotor and stator resistance estimation part of the IM is performed by the PQ-MRAS method in which the rotor angular velocity is reconstructed from the interconnected high gain observer (IHGO). The ITSC fault detection part is done by the derivation of stator resistance estimated by the PQ-</span><span style="white-space:normal;font-size:10pt;font-family:;" "="">MRAS estimator. In addition to the speed sensorless detection of ITSC faults of the IM, an approach to determine the number of shorted turns based on the difference between the phase current of the healthy and faulty machine is proposed. Simulation results obtained from the MATLAB/Simulink platform have shown that the PQ-MRAS estimator using an interconnected high-</span><span style="white-space:normal;font-size:10pt;font-family:;" "="">gain observer gives very similar results to those using the speed sensor. The </span><span style="white-space:normal;font-size:10pt;font-family:;" "="">estimation errors in the cases of speed variation and load torque are al</span><span style="white-space:normal;font-size:10pt;font-family:;" "="">mos</span><span style="white-space:normal;font-size:10pt;font-family:;" "="">t identical. Variations in stator and rotor resistances influence the per</span><span style="white-space:normal;font-size:10pt;font-family:;" "="">formance of the observer and lead to poor estimation of the rotor resistance. The results of ITSC fault detection using IHGO are very similar to the results in the literature using the same diagnostic approach with a speed sensor.</span>展开更多
A transient model for an induction machine with stator winding turn faults on a single phase is derived using reference frame transformation theory. The negative sequence component and the 3rd harmonic are often consi...A transient model for an induction machine with stator winding turn faults on a single phase is derived using reference frame transformation theory. The negative sequence component and the 3rd harmonic are often considered as accurate indicators. However, small unbalance in the supply voltage and/or in the machine structure that exists in any real system engenders the same harmonics components. In this case, it is too difficult to distinguish between the current harmonics due to the supply voltage and those originated by inter-turn short- circuit faults. For that, to have the correct diagnosis and to increase the sensitivity and the reliability of the diagnostic system, it is crucial to provide the relationship between the inter-turn short-circuits in the stator winding and the supply voltage imbalance through an accurate mathematical model and via a series of experimental essays.展开更多
文摘This work proposes an alternative strategy to the use of a speed sensor in <span style="white-space:normal;font-size:10pt;font-family:;" "="">the implementation of active and reactive power based model reference adaptive system (PQ-MRAS) estimator in order to calculate the rotor and stator resistances of an induction motor (IM) and the use of these parameters for the detection of inter-turn short circuits (ITSC) faults in the stator of this motor. The rotor and stator resistance estimation part of the IM is performed by the PQ-MRAS method in which the rotor angular velocity is reconstructed from the interconnected high gain observer (IHGO). The ITSC fault detection part is done by the derivation of stator resistance estimated by the PQ-</span><span style="white-space:normal;font-size:10pt;font-family:;" "="">MRAS estimator. In addition to the speed sensorless detection of ITSC faults of the IM, an approach to determine the number of shorted turns based on the difference between the phase current of the healthy and faulty machine is proposed. Simulation results obtained from the MATLAB/Simulink platform have shown that the PQ-MRAS estimator using an interconnected high-</span><span style="white-space:normal;font-size:10pt;font-family:;" "="">gain observer gives very similar results to those using the speed sensor. The </span><span style="white-space:normal;font-size:10pt;font-family:;" "="">estimation errors in the cases of speed variation and load torque are al</span><span style="white-space:normal;font-size:10pt;font-family:;" "="">mos</span><span style="white-space:normal;font-size:10pt;font-family:;" "="">t identical. Variations in stator and rotor resistances influence the per</span><span style="white-space:normal;font-size:10pt;font-family:;" "="">formance of the observer and lead to poor estimation of the rotor resistance. The results of ITSC fault detection using IHGO are very similar to the results in the literature using the same diagnostic approach with a speed sensor.</span>
文摘A transient model for an induction machine with stator winding turn faults on a single phase is derived using reference frame transformation theory. The negative sequence component and the 3rd harmonic are often considered as accurate indicators. However, small unbalance in the supply voltage and/or in the machine structure that exists in any real system engenders the same harmonics components. In this case, it is too difficult to distinguish between the current harmonics due to the supply voltage and those originated by inter-turn short- circuit faults. For that, to have the correct diagnosis and to increase the sensitivity and the reliability of the diagnostic system, it is crucial to provide the relationship between the inter-turn short-circuits in the stator winding and the supply voltage imbalance through an accurate mathematical model and via a series of experimental essays.