At first, the paper reviews, analyses and discusses uplifting mechanism and history, current situation of Tibet plateau. Coal\|bearing strata and coal seam were discovered by surveying and many rocks samples and struc...At first, the paper reviews, analyses and discusses uplifting mechanism and history, current situation of Tibet plateau. Coal\|bearing strata and coal seam were discovered by surveying and many rocks samples and structural samples were collected, which established the foundation for further studying. From all above, the paper has studied strata system, time\|spatial evolution, magma activity and its regularity of continental collision of Tibet plateau and rock’s mechanical features under high temperature and pressure. The paper has also summerized tectonic features, studied geological process by time coordinate and proposed multidisciplinary geological model. The paper has proposed evolutinal model of modern structural stress field in early quaternary, modern structural stress field and crustal deformation and explored geophysical field features and deep structures from man\|mad earthquake, regional gravity field and electrical structures, thus established geophysical field model. In addition, the paper proposed overall dynamic model according to stress field, displacement orientation and velocity restriction condition, indoplate collision to Eurasia.Thoroughly, the paper has studied and stated mechanical system, non\|stability, multibody collision mechanics and mantle plume mechanical model and established mechanical model. Finally, the paper has studied numeral simulation about spheric inter\|acting during continental collision of Tibet plateau, from this, analysed and inferred its evolution history.展开更多
The Floridan aquifer system underlies the United States (US) Southeastern Coastal Plain Physiographic Region. Anthropogenic groundwater declines in that regional karst aquifer system, via semi-confining zones, have be...The Floridan aquifer system underlies the United States (US) Southeastern Coastal Plain Physiographic Region. Anthropogenic groundwater declines in that regional karst aquifer system, via semi-confining zones, have been documented in published literature for decades. These anthropogenic groundwater declines reduce surfacewater levels and flows, which increases saltwater intrusion and alters the physical, chemical, and biological integrity of the nation’s waters, in violation of the US Clean Water Act (CWA) of 1972. Historic groundwater declines from mining and other anthropogenic groundwater withdrawals from this regional karst aquifer system already threaten the survival and recovery of marine and aquatic federally endangered and threatened species, as well as existing and proposed critical habitat for those species within the Southeastern Coastal Plain Ecoregion. Examples of marine and aquatic species and their designated critical habitat adversely affected by groundwater declines in the Greater Okefenokee Swamp Basin of this ecoregion include the federally endangered south Atlantic Distinct Population Segments (DPS) of the Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus), shortnose sturgeon (Acipenser brevirostrum), and oval pigtoe mussel (Pleurobema pyriforme), as well as the federally threatened Gulf subspecies of the Atlantic sturgeon (Acipenser oxyrinchus desotoi) and Suwannee moccasinshell (Medionidus walkeri). In 2020, rules were adopted by two federal agencies allowing significant further degradation of the physical, chemical, and biological integrity of the nation’s waters that are essential for maintaining federally listed species and their habitat in this Ecoregion. The US Fish and Wildlife Service (USFWS) has acknowledged the harm to these species and critical habitat from mining and additional groundwater alterations, but no comprehensive Areawide Environmental Impact Statement (AEIS), similar to the AEIS required for mining within the Peace River Basin, has been conducted for any of the numerous mining projects that are expanding and proposed within the Greater Okefenokee Swamp Basin to evaluate all indirect and cumulative adverse impacts to all federally listed species.展开更多
文摘At first, the paper reviews, analyses and discusses uplifting mechanism and history, current situation of Tibet plateau. Coal\|bearing strata and coal seam were discovered by surveying and many rocks samples and structural samples were collected, which established the foundation for further studying. From all above, the paper has studied strata system, time\|spatial evolution, magma activity and its regularity of continental collision of Tibet plateau and rock’s mechanical features under high temperature and pressure. The paper has also summerized tectonic features, studied geological process by time coordinate and proposed multidisciplinary geological model. The paper has proposed evolutinal model of modern structural stress field in early quaternary, modern structural stress field and crustal deformation and explored geophysical field features and deep structures from man\|mad earthquake, regional gravity field and electrical structures, thus established geophysical field model. In addition, the paper proposed overall dynamic model according to stress field, displacement orientation and velocity restriction condition, indoplate collision to Eurasia.Thoroughly, the paper has studied and stated mechanical system, non\|stability, multibody collision mechanics and mantle plume mechanical model and established mechanical model. Finally, the paper has studied numeral simulation about spheric inter\|acting during continental collision of Tibet plateau, from this, analysed and inferred its evolution history.
文摘The Floridan aquifer system underlies the United States (US) Southeastern Coastal Plain Physiographic Region. Anthropogenic groundwater declines in that regional karst aquifer system, via semi-confining zones, have been documented in published literature for decades. These anthropogenic groundwater declines reduce surfacewater levels and flows, which increases saltwater intrusion and alters the physical, chemical, and biological integrity of the nation’s waters, in violation of the US Clean Water Act (CWA) of 1972. Historic groundwater declines from mining and other anthropogenic groundwater withdrawals from this regional karst aquifer system already threaten the survival and recovery of marine and aquatic federally endangered and threatened species, as well as existing and proposed critical habitat for those species within the Southeastern Coastal Plain Ecoregion. Examples of marine and aquatic species and their designated critical habitat adversely affected by groundwater declines in the Greater Okefenokee Swamp Basin of this ecoregion include the federally endangered south Atlantic Distinct Population Segments (DPS) of the Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus), shortnose sturgeon (Acipenser brevirostrum), and oval pigtoe mussel (Pleurobema pyriforme), as well as the federally threatened Gulf subspecies of the Atlantic sturgeon (Acipenser oxyrinchus desotoi) and Suwannee moccasinshell (Medionidus walkeri). In 2020, rules were adopted by two federal agencies allowing significant further degradation of the physical, chemical, and biological integrity of the nation’s waters that are essential for maintaining federally listed species and their habitat in this Ecoregion. The US Fish and Wildlife Service (USFWS) has acknowledged the harm to these species and critical habitat from mining and additional groundwater alterations, but no comprehensive Areawide Environmental Impact Statement (AEIS), similar to the AEIS required for mining within the Peace River Basin, has been conducted for any of the numerous mining projects that are expanding and proposed within the Greater Okefenokee Swamp Basin to evaluate all indirect and cumulative adverse impacts to all federally listed species.