This paper introduces a multi-model approach to design a robust supplementary damping controller. The designed fixed-order supplementary damping controller adjusts the voltage reference set point of SVC. There are two...This paper introduces a multi-model approach to design a robust supplementary damping controller. The designed fixed-order supplementary damping controller adjusts the voltage reference set point of SVC. There are two main objectives of the controller design, damping low frequencies oscillations and enhancing power system stability. This method relies on shaping the closed-loop sensitivity functions in the Nyquist plot under the constraints of these functions. These constraints can be linearized by choosing a desired open-loop transfer function. The robust controller is designed to minimize the error between the open-loop of the original plant model and the desired transfer functions. These outcomes can be achieved by using convex optimization methods. Convexity of the problem formulation ensures global optimality. One of the advantages of the proposed approach is that the approach accounts for multi-model uncertainty. In contrast to the methods available in the literature, the proposed approach deals with full-order model (i.e., model reduction is not required) with lower controller order. The issue of time delay of feedback signals has been addressed in this paper for different values of time delay by applying a multi-model optimization technique. The proposed approach is compared to other existing techniques to design a robust controller which is based on H2 under pole placement. Both techniques are applied to the 68-bus system to evaluate and validate the robust controller performance under different load scenarios and different wind generations.展开更多
Space electromagnetic docking technology, free of propellant and plume contamination, offers continuous, reversible and synchronous controllability, which is widely applied in the future routine on-orbit servicing mis...Space electromagnetic docking technology, free of propellant and plume contamination, offers continuous, reversible and synchronous controllability, which is widely applied in the future routine on-orbit servicing missions. Due to the inherent nonlinearities, couplings and uncertainties of an electromagnetic force model, the dynamics and control problems of them are difficult. A new modeling approach for relative motion dynamics with intersatellite force is proposed. To resolve these control problems better, a novel nonlinear control method for soft space electro-magnetic docking is proposed, which combines merits of artificial potential function method, Lyapunov theory and extended state observer. In addition, the angular momentum management problem of space electromagnetic docking and approaches of handling it by exploiting the Earth's magnetic torque are investigated. Finally, nonlinear simulation results demonstrate the feasibility of the dynamic model and the novel nonlinear control method.展开更多
针对工程中双馈感应电机转子电流控制器参数整定的问题,提出一种利用内模控制理论设计转子电流控制器的鲁棒控制方法。首先定义内模控制的灵敏度函数和互补灵敏度函数,并推导双馈感应电机转子电流控制系统传递函数,建立了转子电流内环...针对工程中双馈感应电机转子电流控制器参数整定的问题,提出一种利用内模控制理论设计转子电流控制器的鲁棒控制方法。首先定义内模控制的灵敏度函数和互补灵敏度函数,并推导双馈感应电机转子电流控制系统传递函数,建立了转子电流内环的内模数学模型。IMC控制器的设计以平方积分误差值和鲁棒稳定M值为准则,并与传统比例积分控制器进行比较。通过对1.5 MW双馈感应电机的MATLAB/SIMULINK仿真表明,本文方法稳态跟踪精度高、动态响应快、对模型误差和外界干扰具有较好的鲁棒性。最后在11 k W的双馈风机实验平台上验证了所提方法的有效性。展开更多
文摘This paper introduces a multi-model approach to design a robust supplementary damping controller. The designed fixed-order supplementary damping controller adjusts the voltage reference set point of SVC. There are two main objectives of the controller design, damping low frequencies oscillations and enhancing power system stability. This method relies on shaping the closed-loop sensitivity functions in the Nyquist plot under the constraints of these functions. These constraints can be linearized by choosing a desired open-loop transfer function. The robust controller is designed to minimize the error between the open-loop of the original plant model and the desired transfer functions. These outcomes can be achieved by using convex optimization methods. Convexity of the problem formulation ensures global optimality. One of the advantages of the proposed approach is that the approach accounts for multi-model uncertainty. In contrast to the methods available in the literature, the proposed approach deals with full-order model (i.e., model reduction is not required) with lower controller order. The issue of time delay of feedback signals has been addressed in this paper for different values of time delay by applying a multi-model optimization technique. The proposed approach is compared to other existing techniques to design a robust controller which is based on H2 under pole placement. Both techniques are applied to the 68-bus system to evaluate and validate the robust controller performance under different load scenarios and different wind generations.
基金supported by the National Natural Science Foundation of China(11172322)
文摘Space electromagnetic docking technology, free of propellant and plume contamination, offers continuous, reversible and synchronous controllability, which is widely applied in the future routine on-orbit servicing missions. Due to the inherent nonlinearities, couplings and uncertainties of an electromagnetic force model, the dynamics and control problems of them are difficult. A new modeling approach for relative motion dynamics with intersatellite force is proposed. To resolve these control problems better, a novel nonlinear control method for soft space electro-magnetic docking is proposed, which combines merits of artificial potential function method, Lyapunov theory and extended state observer. In addition, the angular momentum management problem of space electromagnetic docking and approaches of handling it by exploiting the Earth's magnetic torque are investigated. Finally, nonlinear simulation results demonstrate the feasibility of the dynamic model and the novel nonlinear control method.
文摘针对工程中双馈感应电机转子电流控制器参数整定的问题,提出一种利用内模控制理论设计转子电流控制器的鲁棒控制方法。首先定义内模控制的灵敏度函数和互补灵敏度函数,并推导双馈感应电机转子电流控制系统传递函数,建立了转子电流内环的内模数学模型。IMC控制器的设计以平方积分误差值和鲁棒稳定M值为准则,并与传统比例积分控制器进行比较。通过对1.5 MW双馈感应电机的MATLAB/SIMULINK仿真表明,本文方法稳态跟踪精度高、动态响应快、对模型误差和外界干扰具有较好的鲁棒性。最后在11 k W的双馈风机实验平台上验证了所提方法的有效性。