To overcome the inter-carrier interference (ICI) of orthogonal frequency division multiplexing (OFDM) systems subject to unknown carrier frequency offset (CFO) and multipath, this paper develops a blind adaptive...To overcome the inter-carrier interference (ICI) of orthogonal frequency division multiplexing (OFDM) systems subject to unknown carrier frequency offset (CFO) and multipath, this paper develops a blind adaptive interference suppression scheme based on independent component analysis (ICA). Taking into account statistical independence of subcarriers' signals of OFDM, the signal recovery mechanism is investigated to achieve the goal of blind equalization. The received OFDM signals can be considered as the mixed observation signals. The effect of CFO and multipath corresponds to the mixing matrix in the problem of blind source separation (BSS) framework. In this paper, the ICA- based OFDM system model is built, and the proposed ICA-based detector is exploited to extract source signals from the observation of a received mixture based on the assumption of statistical independence between the sources. The blind separation technique can increase spectral efficiency and provide robustness performance against erroneous parameter estimation problem. Theoretical analysis and simulation results show that compared with the conventional pilot-based scheme, the improved performance of OFDM systems is obtained by the proposed ICA-based detection technique.展开更多
In this paper, we propose two joint transmit-receive iterative algorithms without the cooperation between different base stations based on the idea of interference alignment (IA) to improve the throughput of relay bac...In this paper, we propose two joint transmit-receive iterative algorithms without the cooperation between different base stations based on the idea of interference alignment (IA) to improve the throughput of relay backhaul links in cellular networks for the case of imperfect channel knowledge,which can be implemented with small changes to existing TD-LTE standards. Unlike the previous interference alignment algorithms' only reducing the sum interference to the other receivers at the transmitter or the sum received Multi-user interference (MUI) at the receiver, our algorithm shapes the transmission of each data stream at transmitters in order not only to minimize interference to the other users, but also to minimize the interference between different streams objected to the same user, suppressing the MUI and Multi-stream interference (MSI) at receivers. The proposed algorithm I is to maximize the SINR at receivers. But the complexity is relatively high. Algorithm II only needs linear operations and sacrifices a little performance for much lower complexity compared to the Maximize SINR iterative algorithm which needs the inversion operation of matrix. It is also proved that the algorithm converges monotonically. The simulation results show that the techniques have considerable performance gain compared with the previous algorithms. Further research about power allocation is also discussed.展开更多
基金supported by a grant from the national High Technology Research and development Program of China(863 Program)(No.2012AA01A502)National Natural Science Foundation of China(No.61179006)Science and Technology Support Program of Sichuan Province(No.2014GZX0004)
文摘To overcome the inter-carrier interference (ICI) of orthogonal frequency division multiplexing (OFDM) systems subject to unknown carrier frequency offset (CFO) and multipath, this paper develops a blind adaptive interference suppression scheme based on independent component analysis (ICA). Taking into account statistical independence of subcarriers' signals of OFDM, the signal recovery mechanism is investigated to achieve the goal of blind equalization. The received OFDM signals can be considered as the mixed observation signals. The effect of CFO and multipath corresponds to the mixing matrix in the problem of blind source separation (BSS) framework. In this paper, the ICA- based OFDM system model is built, and the proposed ICA-based detector is exploited to extract source signals from the observation of a received mixture based on the assumption of statistical independence between the sources. The blind separation technique can increase spectral efficiency and provide robustness performance against erroneous parameter estimation problem. Theoretical analysis and simulation results show that compared with the conventional pilot-based scheme, the improved performance of OFDM systems is obtained by the proposed ICA-based detection technique.
基金Sponsored by the Important National Science & Technology Specific Projects of China (Grant No. 2009ZX03004-001)the Cooperation Project with Huawei Technologies Company (Grant No. YBWL2010242)
文摘In this paper, we propose two joint transmit-receive iterative algorithms without the cooperation between different base stations based on the idea of interference alignment (IA) to improve the throughput of relay backhaul links in cellular networks for the case of imperfect channel knowledge,which can be implemented with small changes to existing TD-LTE standards. Unlike the previous interference alignment algorithms' only reducing the sum interference to the other receivers at the transmitter or the sum received Multi-user interference (MUI) at the receiver, our algorithm shapes the transmission of each data stream at transmitters in order not only to minimize interference to the other users, but also to minimize the interference between different streams objected to the same user, suppressing the MUI and Multi-stream interference (MSI) at receivers. The proposed algorithm I is to maximize the SINR at receivers. But the complexity is relatively high. Algorithm II only needs linear operations and sacrifices a little performance for much lower complexity compared to the Maximize SINR iterative algorithm which needs the inversion operation of matrix. It is also proved that the algorithm converges monotonically. The simulation results show that the techniques have considerable performance gain compared with the previous algorithms. Further research about power allocation is also discussed.