This paper proposes the orthogonal and nonorthogonal schemes in the interference environments for visible light communication( VLC) systems. The proposed schemes pay attention to the case when different bit streams ...This paper proposes the orthogonal and nonorthogonal schemes in the interference environments for visible light communication( VLC) systems. The proposed schemes pay attention to the case when different bit streams from multiple cells are simultaneously transmitted, which consequently causes inter-cell interference( ICI) and greatly deteriorates the bit error rate( BER) and channel capacity performance of the system. The performance of the newdeveloped multi-cell system in indoor VLC systems is evaluated. The bipolar phase shift keying( BPSK) modulation scheme with orthogonal pulses( OPs) for multiple cells environments is employed to mitigate the ICI problem and improve the BER and channel capacity performances. Since the use of different OPs in each cell requires more number of OPs, which requires high bandwidth, OPs are reused at certain distances. Three different schemes, which are OPs,orthogonal and non-orthogonal pulses( NOP) reuse, are compared. This paper investigates the impact of using these schemes and compared their performances in the ICI environments. The BER and channel capacity using the proposed schemes are comprehensively examined. Simulation and theoretical results showthat the OPs schemes are more effective in the interference areas of the room and significantly outperform NOP.展开更多
With the rapid development of the fifth-generation(5 G)mobile communication technology,the application of each frequency band has reached the extreme,causing mutual interference between different modules.Hence,there i...With the rapid development of the fifth-generation(5 G)mobile communication technology,the application of each frequency band has reached the extreme,causing mutual interference between different modules.Hence,there is a requirement for detecting filtering and preventing interference.In the troposphere,over-the-horizon propagation occurs in atmospheric ducts and turbulent media.The effects of both ducting and turbulence can increase the probability of occurrence of long-distance co-channel interference(CCI),in turn,severely affecting the key performance indicators such as system access,handover and drop.In the 5 G era,to ensure communication channels and information security,CCI must be reduced.This paper introduces a scattering parabolic equation algorithm for calculating signal propagation in atmospheric ducts on irregular terrain boundaries.It combines Hitney’s radio physical optical model and Wagner’s nonuniform turbulent scattering model for calculating the tropospheric scattering in an evaporation duct or a surface-based duct.The new model proposes a tropospheric scattering parabolic equation algorithm for various tropospheric duct environments.Finally,as a specific case,the topographical boundaries between several cities in the East China Plain were considered,and the over-the-horizon propagation loss was simulated for various ducting and turbulent environments.The simulation results were used to evaluate whether CCI would occur between cities in a specific environment.展开更多
The time difference of arrival(TDOA)estimation plays a crucial role in the accurate localization of the satellite interference source.In the dual-satellites interference source localization system,the target signal fr...The time difference of arrival(TDOA)estimation plays a crucial role in the accurate localization of the satellite interference source.In the dual-satellites interference source localization system,the target signal from the adjacent satellite is likely to be interfered by the normal communication signal with the same frequency.Therefore,the signal to noise ratio(SNR)of the target signal would become too low,and the TDOA estimation through cross-correlation processing would be unreliable or even unattainable.This paper proposes a technique based on blind separation to solve the co-channel interference problem,where separation of the mixed signal can be carried out by the particle filter(PF)algorithm.The experimental results show that the proposed method could achieve more accurate TDOA estimation.The measured data obtained by using the software radio platform at 915 MHz and 2 GHz respectively verify the effectiveness of the proposed method.展开更多
In order to reduce the interference,a novel,cluster-based medium access control(MAC)protocol with load aware for VANETs is proposed in this paper.First,all vehicles on roads are grouped into stable clusters in the lig...In order to reduce the interference,a novel,cluster-based medium access control(MAC)protocol with load aware for VANETs is proposed in this paper.First,all vehicles on roads are grouped into stable clusters in the light of their direction,number of neighbors,link reliability,and traffic load.By utilizing the advantages of centralized control in software defined VANETs(SDVN),cluster stability can be maintained in real-time.Second,a contention-free MAC mechanism composed of inter-cluster multi-channel allocation and intra-cluster dynamic TDMA frame allocation is proposed to prevent co-channel interference and hidden terminal interference.Simulation results show that the proposed protocol outperforms some existing protocols in cluster stability,delivery ratio,throughput and delay performance.展开更多
In Orthogonal Frequency Division Multiple Access (OFDMA) systems, such as Long Term Evolution (LTE) and so on, the resources used by each user are orthogonal, and the OFDMA systems performances are mainly affected by ...In Orthogonal Frequency Division Multiple Access (OFDMA) systems, such as Long Term Evolution (LTE) and so on, the resources used by each user are orthogonal, and the OFDMA systems performances are mainly affected by the inter-cell interference. Therefore, the inter-cell interference mitigation technology becomes a hotspot. The objective of interference mitigation technologies used in OFDMA systems are to increase cell-edge throughput and average cell throughput. In this paper, the Resource Block Planning (BRBP) based scheme is proposed to mitigate the inter-cell interference and improve the cell-edge throughput. Comparison between the simulation results of BRBP and Round Robin (RR) illustrates that the enhanced performance of BRBP.展开更多
To mitigate interference on celledge users and improve fairness of the whole system, dynamic inter-cell interference coordination(ICIC) is one of the promising solutions. However, traditional dynamic ICIC is considere...To mitigate interference on celledge users and improve fairness of the whole system, dynamic inter-cell interference coordination(ICIC) is one of the promising solutions. However, traditional dynamic ICIC is considered as an NP-hard problem and power variability further adds another dimension to this joint optimization issue, making it even more difficult to quickly reach a near-optimal solution. Therefore, we theoretically obtain the closed-form expression of the near-optimal power allocation ratio for users in adjacent cells paired in the same resource block and interfere each other, so that the total utility corresponding to α-fairness is maximized. Dynamic ICIC using this closed-form solution could improve user fairness without causing an increment of the computational complexity. Numerical results show that, compared with the schemes using identical power for different users, our method does not obviously degrade the system's average spectral efficiency.展开更多
With the growing concern on data rates and resource utilization, Device-to-Device (D2D) communication has been raised in 3GPP Long-Term Evolution (LTE) networks. In order to limit severe interference, previous studies...With the growing concern on data rates and resource utilization, Device-to-Device (D2D) communication has been raised in 3GPP Long-Term Evolution (LTE) networks. In order to limit severe interference, previous studies mainly focus on intra-cell interference that between cellular links and local D2D links. In this paper, we consider both intra-cell interference and inter-cell interference between D2D and cellular links. We propose a new resource reuse algorithm that D2D users reuse the minimum interference uplink (UL) Semi-Persistent Scheduling (SPS) resources to reach the highest throughput. The simulation results show that this scheme reduces interference as well as improves throughput.展开更多
This paper proposes a new inter-cell interference cancellation algorithm called subspace projection in order to eliminate the stronger inter-cell interference. This algorithm is designed for the reverse link of time d...This paper proposes a new inter-cell interference cancellation algorithm called subspace projection in order to eliminate the stronger inter-cell interference. This algorithm is designed for the reverse link of time division duplex-code division multiple access systems. The algorithm works by projecting desired users' signal vector onto the subspace orthogonal to the subspace that inferrers the users' signal. Link-level simulation results show that the scheme eliminates the inter-cell interference efficiently, improves the receiver performance, and increases the system capacity.展开更多
As a new technology, coordinated multipoint (CoMP) transmission is included in LTE-Advanced study item. Moreover, the network architecture in LTE-Advanced system is modified to take into account coordinated transmis...As a new technology, coordinated multipoint (CoMP) transmission is included in LTE-Advanced study item. Moreover, the network architecture in LTE-Advanced system is modified to take into account coordinated transmission. Under this background, a novel power allocation game model is established to mitigate inter-cell interference with cellular coordination. In the light of cellular cooperation relationship and centralized control in eNodeB, the power allocation in each served antenna unit aims to make signal to interference plus noise ratio (SINR) balanced among inter-cells. Through the proposed power allocation game algorithm, the users' SINR can reach the Nash equilibrium, making it feasible to reduce the co-frequency interference by decreasing the transmitted power. Numerical results show that the proposed power allocation algorithm improves the throughput both in cell-center and cell-edge. Moreover, the blocking rate in cell-edge is reduced too.展开更多
To mitigate inter-cell interference in 3G evolution systems, a novel inter-cell interference coordination scheme called soft fractional frequency reuse is proposed in this article, which enables to improve the data ra...To mitigate inter-cell interference in 3G evolution systems, a novel inter-cell interference coordination scheme called soft fractional frequency reuse is proposed in this article, which enables to improve the data rate in cell-edge. On this basis, an inter-cell power control is presented for the inter-cell interference coordination, and the inter-cell balanced signal to interference plus noise ratio (SINR) among users is established for power allocation, which enables mitigation of inter-cell interference. Especially, the power control is based on a novel exponential kernel arithmetic kernel equations. Numerical results show that the proposed rate compared to the existing power control algorithms. equation at higher convergence speed than the traditional scheme improves the throughput and reduces the blocking展开更多
In this paper, we develop and analyze several inter-cell interference modeling methods for cellular network. The models can analyze multiple interfering signals under different fading scenarios. Incoherent addition of...In this paper, we develop and analyze several inter-cell interference modeling methods for cellular network. The models can analyze multiple interfering signals under different fading scenarios. Incoherent addition of summing multiple interfering signals is assumed. We propose an approximate method that uses the generalized Gram-Charlier series to analyze the error of the reference model. The approximate method is not only simple but also with neglectable errors. The methods proposed could be very useful in practical system design and analysis.展开更多
Orthogonal space-time block codes (OSTBCs) are an efficient mean in order to exploit the diversity offered by the wireless multiple-input multiple-output (MIMO) channel. This paper considers capacity problems of O...Orthogonal space-time block codes (OSTBCs) are an efficient mean in order to exploit the diversity offered by the wireless multiple-input multiple-output (MIMO) channel. This paper considers capacity problems of OSTBCs over spatially correlated multiple-input single-out (MISO) Rayleigh fading channels in the presence of spatially correlated Rayleigh co-channel interference and additive Gaussian noise, and derives exact expressions of the ergodic capacity and outage probability (capacity distribution) for such OSTBCs. Some numerical examples are given to illustrate the effect of co-channel interference on the ergodic and outage capacity of OSTBCs.展开更多
Focusing on space-time block code (STBC) systems with unknown co-channel interference, an oblique projection-based robust linear receiver is proposed in this paper.Based on the oblique projection, the desired signal...Focusing on space-time block code (STBC) systems with unknown co-channel interference, an oblique projection-based robust linear receiver is proposed in this paper.Based on the oblique projection, the desired signal subspace and interference-plus-noise subspace are first identified from the received signal.Then the matched filter receiver is used to decode the STBC encoded signals in the desired signal subspace.Simulation results show that the proposed linear receiver obtains significant performance improvement over conventional Capon-type receivers under finite sample-size situations and in the presence of channel estimation errors.展开更多
Most current Global System for Mobile Communications (GSM) frequency planning methods evaluate the interference and assign frequencies based on measurement reports. Assigning the same or adjacent frequencies to cell...Most current Global System for Mobile Communications (GSM) frequency planning methods evaluate the interference and assign frequencies based on measurement reports. Assigning the same or adjacent frequencies to cells close to each other will introduce co-channel and adjacent channel interference which will reduce network performance. Traditionally, man power is used to check and allocate new frequencies which is time consuming and the accuracy is not satisfactory. This paper presents an intelligent analysis method for optimization of co-channel and adjacent channel interference by exploiting cell configuration information. The method defines an interference evaluation model by analyzing various factors such as the base station layer, the azimuth ward relationship, and the cell neighborhood relationships. The interference for each frequency is evaluated and the problem frequencies are optimized. This method is verified by a large number of actual datasets from an in-service GSM network. The results show this method has better intelligence, accuracy, timeliness, and visualization than traditional methods.展开更多
Heterogeneous network (Het-Net) is part of the long-term evolution advanced (LTE-A) study item and represents cellular deployments with a mixture of cells of different overlapping coverage areas, e.g., a number of...Heterogeneous network (Het-Net) is part of the long-term evolution advanced (LTE-A) study item and represents cellular deployments with a mixture of cells of different overlapping coverage areas, e.g., a number of relay and pico cells overlaid by a macro cell in the same frequency. Traffic balancing and interference management are required in Het-Net design for LTE-A to maintain system performance. In this paper, we propose an inter-domain cooperative traffic balancing scheme focusing on reducing the effective resource cost and mitigating the co-channel interference in multi-domain Het-Net. We first set up the conception of multi-domain in Het-Net and incorporate the co-channel interference into the proposed traffic balancing scheme. Then we model the traffic balancing issue as a multi-domain traffic resource optimization problem for minimizing the effective resource cost. The detailed implementation for the proposed traffic balancing scheme is designed. In the numerical evaluation, the genetic algorithm (GA) as an optimization method is used to demonstrate that the total effective resource cost is significantly reduced through our proposed inter-domain traffic balancing scheme, comparing with the intra-domain traffic balancing scheme. The 43% of the resource cost is saved. In the system level simulation, the performance results of signal interference noise ratio (SINR) and throughput demonstrate that the proposed scheme has great advantages in interference management in Het-Net.展开更多
As wireless data applications over cellular networks become more widespread, the pressure to increase capacity will become even more intense. Capacity in the 800 and 900 MHz bands, where bandwidth is restricted, is al...As wireless data applications over cellular networks become more widespread, the pressure to increase capacity will become even more intense. Capacity in the 800 and 900 MHz bands, where bandwidth is restricted, is already becoming a limiting factor. This paper attempts to address how the application of smart antenna systems has brought about improvements in call quality and increased capacity through reduced Interference in Mobile Communication. The smart antenna may be in a variety of ways to improve the performance of a communications system. Perhaps most importantly is its capability to cancel co-channel interference. It helps in improving the system performance by increasing the channel capacity, spectrum efficiency, extending range coverage, speech quality, enabling tighter reuse of frequencies within a cellular network and economically, feasible increased signal gain, greater, reduced multipath reflection. It has been argued that Smart antennas and the Algorithms to control them are vital to a high-capacity communication system development.展开更多
In terms of the carrier-to-interference-ratio, the performance of co-channel interference in cellular communications systems is studied. The approach is based on an improved analysis, which allows to take into account...In terms of the carrier-to-interference-ratio, the performance of co-channel interference in cellular communications systems is studied. The approach is based on an improved analysis, which allows to take into account some area in the desired sector may not be interfered by some co-channel sectors with exact geometrical analysis, instead of the entire sector interfered by some co-channel sectors. Other features, such as power control and the number of interferences are also included.展开更多
A new enhanced inter-cell interference coordination (elCIC) is adopted for managing almost blank sub-frame (ABS),which jointly exploits the time, frequency and power dimensions to improve the resource utilization....A new enhanced inter-cell interference coordination (elCIC) is adopted for managing almost blank sub-frame (ABS),which jointly exploits the time, frequency and power dimensions to improve the resource utilization. In particular, a non-uniform two tier heterogeneous network ( HetNet) is considered, where the pico cells are located close to the macro cell and the number of users in each pico cell is different. To alleviate the interference caused by the co-channeldeployment,the macro cells employ low power ABS (LP- ABS), and the resource blocks (RBs) are divided into twoparts during an ABS. One is exclusively reserved for macro cell users ad the other is reserved for pico cell users. Themacro cells are allowed to use different percentages of RBs and different powers for their own transmission during the LP- ABS. The user association,resource allocation,ABS proportion,the frequency band partition parameter and the transmission power of macro cells are considered, aiming at maximizing the proportional fairness utility of the system. An iterative algorithm is also proposed and simulation results demonstrate that the proposed algorithm can improve both the system throughput and user fairness compared with the existing schemes.展开更多
This paper provides an analytical framework for the outage probability evaluation of dual-hop decode-and-forward relay systems operating over K-μfading channels in the presence of co-channel interference. The interfe...This paper provides an analytical framework for the outage probability evaluation of dual-hop decode-and-forward relay systems operating over K-μfading channels in the presence of co-channel interference. The interferers are independent non-identically distributed K-μfading. An accurate analytical-form expression for the cumulative distribution function of the received signal power to interference and noise ratio is derived. Various numerical results are compared with Monte Carlo simulation results in order to corroborate the accuracy of the proposed expressions. Our results show that increasing the value of kappa of main links will decrease the outage probability of relay systems. Furthermore, the system performance degrades with the number of interferences.展开更多
The κ-μ fading model is an advanced channel model in super dense wireless networks.In this paper,we evaluate the performance of the system over κ-μ fading channel in super dense relay networks with consideration o...The κ-μ fading model is an advanced channel model in super dense wireless networks.In this paper,we evaluate the performance of the system over κ-μ fading channel in super dense relay networks with consideration of multiple independent but not necessarily identically distributed(i.n.i.d.) cochannel interference(CCI) under interferencelimited environment.More specifically,we derive a useful and accurate cumulative distribution function(CDF) expression of the end-to-end signal-to-interference plus noise(SINR) ratio.Moreover,we derive novel analytical expressions of the outage probability(OP),average bit error probability(ABEP) and average capacity for binary modulation types and arbitrary positive values of κ-and μ of such system.Furthermore,we propose asymptotic analysis for both the OP and ABEP to give physical insights.A simplified analytical form for the ABEP at high-SNR regimes is provided as well.Finally,the accuracy of the derived expressions is well validated by Monte Carlo simulations.展开更多
基金The National High Technology Research and Development Program of China(863 Program)(No.2013AA013601)the National Natural Science Foundation of China(No.61223001)+6 种基金the Natural Science Foundation of Jiangsu Province(No.BK20140646)the Research Fund of National Mobile Communication Research Laboratory(No.2014A032014B032014B04)the Research Fund of Zhongxing Telecommunication Equipment Corporationthe Fundamental Research Funds of the Central Universities(No.2242014K40033)the United Creative Foundation of Jiangsu Province(No.BY2013095-1-18)
文摘This paper proposes the orthogonal and nonorthogonal schemes in the interference environments for visible light communication( VLC) systems. The proposed schemes pay attention to the case when different bit streams from multiple cells are simultaneously transmitted, which consequently causes inter-cell interference( ICI) and greatly deteriorates the bit error rate( BER) and channel capacity performance of the system. The performance of the newdeveloped multi-cell system in indoor VLC systems is evaluated. The bipolar phase shift keying( BPSK) modulation scheme with orthogonal pulses( OPs) for multiple cells environments is employed to mitigate the ICI problem and improve the BER and channel capacity performances. Since the use of different OPs in each cell requires more number of OPs, which requires high bandwidth, OPs are reused at certain distances. Three different schemes, which are OPs,orthogonal and non-orthogonal pulses( NOP) reuse, are compared. This paper investigates the impact of using these schemes and compared their performances in the ICI environments. The BER and channel capacity using the proposed schemes are comprehensively examined. Simulation and theoretical results showthat the OPs schemes are more effective in the interference areas of the room and significantly outperform NOP.
基金supported by the National Natural Science Foundation of China(Grant Nos.62005205,62071359,and 61775175)Natural Science Basic Research Program of Shaanxi,China(Grant No.2020JQ-331)。
文摘With the rapid development of the fifth-generation(5 G)mobile communication technology,the application of each frequency band has reached the extreme,causing mutual interference between different modules.Hence,there is a requirement for detecting filtering and preventing interference.In the troposphere,over-the-horizon propagation occurs in atmospheric ducts and turbulent media.The effects of both ducting and turbulence can increase the probability of occurrence of long-distance co-channel interference(CCI),in turn,severely affecting the key performance indicators such as system access,handover and drop.In the 5 G era,to ensure communication channels and information security,CCI must be reduced.This paper introduces a scattering parabolic equation algorithm for calculating signal propagation in atmospheric ducts on irregular terrain boundaries.It combines Hitney’s radio physical optical model and Wagner’s nonuniform turbulent scattering model for calculating the tropospheric scattering in an evaporation duct or a surface-based duct.The new model proposes a tropospheric scattering parabolic equation algorithm for various tropospheric duct environments.Finally,as a specific case,the topographical boundaries between several cities in the East China Plain were considered,and the over-the-horizon propagation loss was simulated for various ducting and turbulent environments.The simulation results were used to evaluate whether CCI would occur between cities in a specific environment.
基金supported by the Fundamental Research Funds for the Central Universities(2082604194194)
文摘The time difference of arrival(TDOA)estimation plays a crucial role in the accurate localization of the satellite interference source.In the dual-satellites interference source localization system,the target signal from the adjacent satellite is likely to be interfered by the normal communication signal with the same frequency.Therefore,the signal to noise ratio(SNR)of the target signal would become too low,and the TDOA estimation through cross-correlation processing would be unreliable or even unattainable.This paper proposes a technique based on blind separation to solve the co-channel interference problem,where separation of the mixed signal can be carried out by the particle filter(PF)algorithm.The experimental results show that the proposed method could achieve more accurate TDOA estimation.The measured data obtained by using the software radio platform at 915 MHz and 2 GHz respectively verify the effectiveness of the proposed method.
文摘In order to reduce the interference,a novel,cluster-based medium access control(MAC)protocol with load aware for VANETs is proposed in this paper.First,all vehicles on roads are grouped into stable clusters in the light of their direction,number of neighbors,link reliability,and traffic load.By utilizing the advantages of centralized control in software defined VANETs(SDVN),cluster stability can be maintained in real-time.Second,a contention-free MAC mechanism composed of inter-cluster multi-channel allocation and intra-cluster dynamic TDMA frame allocation is proposed to prevent co-channel interference and hidden terminal interference.Simulation results show that the proposed protocol outperforms some existing protocols in cluster stability,delivery ratio,throughput and delay performance.
文摘In Orthogonal Frequency Division Multiple Access (OFDMA) systems, such as Long Term Evolution (LTE) and so on, the resources used by each user are orthogonal, and the OFDMA systems performances are mainly affected by the inter-cell interference. Therefore, the inter-cell interference mitigation technology becomes a hotspot. The objective of interference mitigation technologies used in OFDMA systems are to increase cell-edge throughput and average cell throughput. In this paper, the Resource Block Planning (BRBP) based scheme is proposed to mitigate the inter-cell interference and improve the cell-edge throughput. Comparison between the simulation results of BRBP and Round Robin (RR) illustrates that the enhanced performance of BRBP.
基金supported by the National Natural Science Foundation of China under Grant No. 61501160supported by the Fundamental Research Funds for the Central Universities of China under Grant No. 2015HGCH0013
文摘To mitigate interference on celledge users and improve fairness of the whole system, dynamic inter-cell interference coordination(ICIC) is one of the promising solutions. However, traditional dynamic ICIC is considered as an NP-hard problem and power variability further adds another dimension to this joint optimization issue, making it even more difficult to quickly reach a near-optimal solution. Therefore, we theoretically obtain the closed-form expression of the near-optimal power allocation ratio for users in adjacent cells paired in the same resource block and interfere each other, so that the total utility corresponding to α-fairness is maximized. Dynamic ICIC using this closed-form solution could improve user fairness without causing an increment of the computational complexity. Numerical results show that, compared with the schemes using identical power for different users, our method does not obviously degrade the system's average spectral efficiency.
文摘With the growing concern on data rates and resource utilization, Device-to-Device (D2D) communication has been raised in 3GPP Long-Term Evolution (LTE) networks. In order to limit severe interference, previous studies mainly focus on intra-cell interference that between cellular links and local D2D links. In this paper, we consider both intra-cell interference and inter-cell interference between D2D and cellular links. We propose a new resource reuse algorithm that D2D users reuse the minimum interference uplink (UL) Semi-Persistent Scheduling (SPS) resources to reach the highest throughput. The simulation results show that this scheme reduces interference as well as improves throughput.
文摘This paper proposes a new inter-cell interference cancellation algorithm called subspace projection in order to eliminate the stronger inter-cell interference. This algorithm is designed for the reverse link of time division duplex-code division multiple access systems. The algorithm works by projecting desired users' signal vector onto the subspace orthogonal to the subspace that inferrers the users' signal. Link-level simulation results show that the scheme eliminates the inter-cell interference efficiently, improves the receiver performance, and increases the system capacity.
基金Supported by the Sino-Swedish Project (Grant No. 2008DFA12110)the Key Project of Beijing Municipal Science & Technology Commission(Grant No. D08080100620802)+2 种基金the National Science and Technology Special Project "IMT-Advanced Open Key Technology Research (GroupCell Structure)"(Grant No. 2009ZX03003-011)the National Natural Science Foundation of China (Grant No. 60872048)the NationalKey Basic Research Program of China (Grant No. 2009CB320407)
文摘As a new technology, coordinated multipoint (CoMP) transmission is included in LTE-Advanced study item. Moreover, the network architecture in LTE-Advanced system is modified to take into account coordinated transmission. Under this background, a novel power allocation game model is established to mitigate inter-cell interference with cellular coordination. In the light of cellular cooperation relationship and centralized control in eNodeB, the power allocation in each served antenna unit aims to make signal to interference plus noise ratio (SINR) balanced among inter-cells. Through the proposed power allocation game algorithm, the users' SINR can reach the Nash equilibrium, making it feasible to reduce the co-frequency interference by decreasing the transmitted power. Numerical results show that the proposed power allocation algorithm improves the throughput both in cell-center and cell-edge. Moreover, the blocking rate in cell-edge is reduced too.
基金supported by Sino-Swedish Project (2008DFA12110)Key Project of BMSTC (D08080100620802)+1 种基金the National Natural Science Foundation of China (60872048)National Science and Technology Special Project ‘Group Cell’ (2009ZX03003-011)
文摘To mitigate inter-cell interference in 3G evolution systems, a novel inter-cell interference coordination scheme called soft fractional frequency reuse is proposed in this article, which enables to improve the data rate in cell-edge. On this basis, an inter-cell power control is presented for the inter-cell interference coordination, and the inter-cell balanced signal to interference plus noise ratio (SINR) among users is established for power allocation, which enables mitigation of inter-cell interference. Especially, the power control is based on a novel exponential kernel arithmetic kernel equations. Numerical results show that the proposed rate compared to the existing power control algorithms. equation at higher convergence speed than the traditional scheme improves the throughput and reduces the blocking
基金supported by the Key Project (2009ZX03003-004-01)the National Natural Science Foundation of China (60811120097)
文摘In this paper, we develop and analyze several inter-cell interference modeling methods for cellular network. The models can analyze multiple interfering signals under different fading scenarios. Incoherent addition of summing multiple interfering signals is assumed. We propose an approximate method that uses the generalized Gram-Charlier series to analyze the error of the reference model. The approximate method is not only simple but also with neglectable errors. The methods proposed could be very useful in practical system design and analysis.
基金the National Natural Science Foundation of China (Grant No. 60672030)the Open Research Fund of National Mobile Communications Research Laboratory of Southeast University (Grant No. W200810)
文摘Orthogonal space-time block codes (OSTBCs) are an efficient mean in order to exploit the diversity offered by the wireless multiple-input multiple-output (MIMO) channel. This paper considers capacity problems of OSTBCs over spatially correlated multiple-input single-out (MISO) Rayleigh fading channels in the presence of spatially correlated Rayleigh co-channel interference and additive Gaussian noise, and derives exact expressions of the ergodic capacity and outage probability (capacity distribution) for such OSTBCs. Some numerical examples are given to illustrate the effect of co-channel interference on the ergodic and outage capacity of OSTBCs.
基金Supported partially by the National Natural Science Foundation of China (Grant Nos 60572046, 60502022, 60772095)the National High-Tech Research & Development Program of China (Grant No 2006AA01Z220)
文摘Focusing on space-time block code (STBC) systems with unknown co-channel interference, an oblique projection-based robust linear receiver is proposed in this paper.Based on the oblique projection, the desired signal subspace and interference-plus-noise subspace are first identified from the received signal.Then the matched filter receiver is used to decode the STBC encoded signals in the desired signal subspace.Simulation results show that the proposed linear receiver obtains significant performance improvement over conventional Capon-type receivers under finite sample-size situations and in the presence of channel estimation errors.
基金Supported by the National Key Projects of Science and Technology of China (No. 2010ZX03005-003)
文摘Most current Global System for Mobile Communications (GSM) frequency planning methods evaluate the interference and assign frequencies based on measurement reports. Assigning the same or adjacent frequencies to cells close to each other will introduce co-channel and adjacent channel interference which will reduce network performance. Traditionally, man power is used to check and allocate new frequencies which is time consuming and the accuracy is not satisfactory. This paper presents an intelligent analysis method for optimization of co-channel and adjacent channel interference by exploiting cell configuration information. The method defines an interference evaluation model by analyzing various factors such as the base station layer, the azimuth ward relationship, and the cell neighborhood relationships. The interference for each frequency is evaluated and the problem frequencies are optimized. This method is verified by a large number of actual datasets from an in-service GSM network. The results show this method has better intelligence, accuracy, timeliness, and visualization than traditional methods.
基金supported by the National Natural Science Foundation of China (60961004/F0104)
文摘Heterogeneous network (Het-Net) is part of the long-term evolution advanced (LTE-A) study item and represents cellular deployments with a mixture of cells of different overlapping coverage areas, e.g., a number of relay and pico cells overlaid by a macro cell in the same frequency. Traffic balancing and interference management are required in Het-Net design for LTE-A to maintain system performance. In this paper, we propose an inter-domain cooperative traffic balancing scheme focusing on reducing the effective resource cost and mitigating the co-channel interference in multi-domain Het-Net. We first set up the conception of multi-domain in Het-Net and incorporate the co-channel interference into the proposed traffic balancing scheme. Then we model the traffic balancing issue as a multi-domain traffic resource optimization problem for minimizing the effective resource cost. The detailed implementation for the proposed traffic balancing scheme is designed. In the numerical evaluation, the genetic algorithm (GA) as an optimization method is used to demonstrate that the total effective resource cost is significantly reduced through our proposed inter-domain traffic balancing scheme, comparing with the intra-domain traffic balancing scheme. The 43% of the resource cost is saved. In the system level simulation, the performance results of signal interference noise ratio (SINR) and throughput demonstrate that the proposed scheme has great advantages in interference management in Het-Net.
文摘As wireless data applications over cellular networks become more widespread, the pressure to increase capacity will become even more intense. Capacity in the 800 and 900 MHz bands, where bandwidth is restricted, is already becoming a limiting factor. This paper attempts to address how the application of smart antenna systems has brought about improvements in call quality and increased capacity through reduced Interference in Mobile Communication. The smart antenna may be in a variety of ways to improve the performance of a communications system. Perhaps most importantly is its capability to cancel co-channel interference. It helps in improving the system performance by increasing the channel capacity, spectrum efficiency, extending range coverage, speech quality, enabling tighter reuse of frequencies within a cellular network and economically, feasible increased signal gain, greater, reduced multipath reflection. It has been argued that Smart antennas and the Algorithms to control them are vital to a high-capacity communication system development.
基金This workis supported by Applied Basic Research Programs Foundation of Chongqing Municipal Education Commission(050303) .
文摘In terms of the carrier-to-interference-ratio, the performance of co-channel interference in cellular communications systems is studied. The approach is based on an improved analysis, which allows to take into account some area in the desired sector may not be interfered by some co-channel sectors with exact geometrical analysis, instead of the entire sector interfered by some co-channel sectors. Other features, such as power control and the number of interferences are also included.
基金The National Science and Technology Major Project(2016ZX03001011-005)the National Natural Science Foundation of China(No.61571123,61521061)+1 种基金the Research Fund of National Mobile Communications Research Laboratory of Southeast University(No.2017A03)Qing Lan Project
文摘A new enhanced inter-cell interference coordination (elCIC) is adopted for managing almost blank sub-frame (ABS),which jointly exploits the time, frequency and power dimensions to improve the resource utilization. In particular, a non-uniform two tier heterogeneous network ( HetNet) is considered, where the pico cells are located close to the macro cell and the number of users in each pico cell is different. To alleviate the interference caused by the co-channeldeployment,the macro cells employ low power ABS (LP- ABS), and the resource blocks (RBs) are divided into twoparts during an ABS. One is exclusively reserved for macro cell users ad the other is reserved for pico cell users. Themacro cells are allowed to use different percentages of RBs and different powers for their own transmission during the LP- ABS. The user association,resource allocation,ABS proportion,the frequency band partition parameter and the transmission power of macro cells are considered, aiming at maximizing the proportional fairness utility of the system. An iterative algorithm is also proposed and simulation results demonstrate that the proposed algorithm can improve both the system throughput and user fairness compared with the existing schemes.
基金supported by the NSFC project under grant No.61101237the Fundamental Research Funds for the Central Universities No.2014JBZ001
文摘This paper provides an analytical framework for the outage probability evaluation of dual-hop decode-and-forward relay systems operating over K-μfading channels in the presence of co-channel interference. The interferers are independent non-identically distributed K-μfading. An accurate analytical-form expression for the cumulative distribution function of the received signal power to interference and noise ratio is derived. Various numerical results are compared with Monte Carlo simulation results in order to corroborate the accuracy of the proposed expressions. Our results show that increasing the value of kappa of main links will decrease the outage probability of relay systems. Furthermore, the system performance degrades with the number of interferences.
基金supported by the NSFC project under grant No. 61101237the Fundamental Research Funds for the Central Universities No. 2014JBZ001China Postdoctoral Science Foundation No. 2014M560081
文摘The κ-μ fading model is an advanced channel model in super dense wireless networks.In this paper,we evaluate the performance of the system over κ-μ fading channel in super dense relay networks with consideration of multiple independent but not necessarily identically distributed(i.n.i.d.) cochannel interference(CCI) under interferencelimited environment.More specifically,we derive a useful and accurate cumulative distribution function(CDF) expression of the end-to-end signal-to-interference plus noise(SINR) ratio.Moreover,we derive novel analytical expressions of the outage probability(OP),average bit error probability(ABEP) and average capacity for binary modulation types and arbitrary positive values of κ-and μ of such system.Furthermore,we propose asymptotic analysis for both the OP and ABEP to give physical insights.A simplified analytical form for the ABEP at high-SNR regimes is provided as well.Finally,the accuracy of the derived expressions is well validated by Monte Carlo simulations.