The authors have developed an integral view of the inter-decadal variability of July-August (JA) tropospheric temperature across the entire subtropical Northern Hemisphere. Using reanalysis data and complementary ba...The authors have developed an integral view of the inter-decadal variability of July-August (JA) tropospheric temperature across the entire subtropical Northern Hemisphere. Using reanalysis data and complementary balloon-borne measurements, the authors identify one major mode of variability for the period 1958 2001 which exhibits a significant cooling center over East Asia and warming centers over the North Atlantic and North Pacific. The cooling (warming) signals barotropically penetrate through the troposphere, with the strongest anomalies at 200-300 hPa. The amplitude of the cooling over East Asia is stronger than that of the warming over the North Atlantic (North Pacific) by a factor of 2 (3). This dominant mode exhibits a declining tendency for the entire period examined, particularly before 1980. After the mid-1980s, the tendency has leveled off. Variations of the harmonious change of JA upper tropospheric temperature represented by the principal component of Empirical Orthogonal Function analysis exhibit significant negative (positive) correlations with SST anomalies in the eastern tropical Pacific and the western tropical Indian Ocean (mid-latitude North Pacific). Possible mechanisms are discussed.展开更多
Empirical orthogonal function (EOF) analysis reveals a co-variability of Sea surface temperatures (SSTs) in the Southern Hemisphere (0°-60°S). In the South Indian and Atlantic Oceans, there is a subtro...Empirical orthogonal function (EOF) analysis reveals a co-variability of Sea surface temperatures (SSTs) in the Southern Hemisphere (0°-60°S). In the South Indian and Atlantic Oceans, there is a subtropical dipole pattern slanted in the southwest-northeast direction. In the South Pacific Ocean, a meridional tripole structure emerges, whose middle pole co-varies with the dipoles in the South Indian and Atlantic Oceans and is used in this study to track subtropical Pacific variability. The South Indian and Atlantic Ocean dipoles and the subtropical Pacific variability are phase-locked in austral summer. On the inter-decadal time scales, the dipoles in the South Indian and Atlantic Oceans weaken in amplitude after 1979/1980. No such weakening is found in the subtropical South Pacific Ocean. Interestingly, despite the reduced amplitude, the correlation of the Indian Ocean and Atlantic dipoles with E1 Nino and Southern Oscillation (ENSO) are enhanced after 1979/1980. The same increase in correlation is found for subtropical South Pacific variability after 1979/1980. These inter-decadal modulations imply that the Southern Hemisphere participates in part of the climate shift in the late 1970s. The correlation between Southern Hemisphere SST and ENSO reduces after 2000.展开更多
The present paper presents a concise summary of our recent studies on the Asian summer monsoon,with highting decadal and inter- decadal scales. The studies on the long- term variations of the Asian summer monsoon and ...The present paper presents a concise summary of our recent studies on the Asian summer monsoon,with highting decadal and inter- decadal scales. The studies on the long- term variations of the Asian summer monsoon and its impacts on the change in the summer precipitation in China are reviewed. Moreover,recent changes in the Asian summer monsoon and summer precipitation in East Asia(including Meiyu precipitation)are discussed. Finally,the future changes of the Asian summer monsoon are also pointed out in this paper.展开更多
In this paper, we report on the results of an investigation into inter-decadal changes in moisture transport and divergence in East Asia for the two periods 1980-2001 and 1958 1979. The aim is to explore the mechanism...In this paper, we report on the results of an investigation into inter-decadal changes in moisture transport and divergence in East Asia for the two periods 1980-2001 and 1958 1979. The aim is to explore the mechanism of summer rainfall change in the region after abrupt changes. The relevant changes are calculated using ERA-40 daily reanalysis datasets. The results show that both stationary and transient eddy moisture transports to the Chinese mainland have declined since the abrupt change in atmospheric general circulation in the late 1970s, leading to more rainfall in South China and less in the North. The anomalous rainfall pattern coincides well with anomalous large-scale moisture divergence in the troposphere, of which stationary-wave or monsoon transport is dominant, in comparison with the contribution of the transient eddies. F^rthermore, their divergences are found to be in opposite phases. In addition, meridional divergence is more important than its zonal counterpart, with an opposite phase in East Asia. Abnormal zonal moisture convergences appear in northwestern and northeastern parts of China, and are related to the excess rainfalls in these regions. An increase in transient eddy activity is one of the major mechanisms for excess rainfall in northern Xinjiang. Consequently, the anomalous rainfall pattern in East Asia results from a decline of the East Asian monsoon after the abrupt change, while the rainfall increase in northwestern China involves anomalies of both stationary waves and transient eddies on boreal westerly over the mid- and high latitudes.展开更多
In this paper,the intensity index of East Asian summer monsoon in northeast China was defined objectively by using NCEP/NCAR daily reanalysis data and national precipitation data from 1961 to 2004.In the inter-decadal...In this paper,the intensity index of East Asian summer monsoon in northeast China was defined objectively by using NCEP/NCAR daily reanalysis data and national precipitation data from 1961 to 2004.In the inter-decadal time scales,the correlations between sea-level pressure field,850 hPa flow field,500 hPa geopotential height,sea surface temperature,Arctic sea ice concentration,a variety of oscillation indexes and intensity index of East Asian summer monsoon in northeast China were analyzed.The analysis showed that the great value area of correlations was consistent between sea-level pressure field,500 hPa geopotential height field and intensity index of East Asian summer monsoon in northeast China in pre-winter or summer,and the correlation was much better in summer than in pre-winter.The correlation was poor between the sea surface temperature and intensity index of East Asian summer monsoon in northeast China,but the correlation was good between the Arctic sea ice concentration and intensity index of East Asian summer monsoon in northeast China.The correlation was better between the NPO index and intensity index of East Asian summer monsoon in northeast China than other indexes.展开更多
Two inter-decadal shifts in East China summer rainfall during the last three decades of the 20th century have been identified.One shift occurred in the late 1970s and featured more rainfall in the Yangtze River valley...Two inter-decadal shifts in East China summer rainfall during the last three decades of the 20th century have been identified.One shift occurred in the late 1970s and featured more rainfall in the Yangtze River valley and prolonged drought in North China.The other shift occurred in the early 1990s and featured increased rainfall in South China.The role of black carbon(BC) aerosol in the first shift event is controversial,and it has not been documented for the second event.In this study,the authors used Geophysical Fluid Dynamics Laboratory's(GFDL's) atmospheric general circulation model known as Atmosphere and Land Model(AM2.1) ,which has been shown to capture East Asian climate variability well,to investigate these issues by conducting sensitive experiments with or without historical BC in East Asia. The results suggest that the model reproduces the first shift well,including intensified rainfall in the Yangtze River and weakened monsoonal circulation.However,the model captures only a fraction of the observed variations for the second shift event.Thus,the role of BC in modulating the two shift events is different,and its impact is relatively less important for the early 1990s event.展开更多
The strongest change in Meiyu periods in the mid-lower Yangtze Basin (MLY) since 1885 occurred in the late 1970s: a stage of weak Meiyu from 1958 to 1978 abruptly transformed into a stage of plentiful Meiyu from 19...The strongest change in Meiyu periods in the mid-lower Yangtze Basin (MLY) since 1885 occurred in the late 1970s: a stage of weak Meiyu from 1958 to 1978 abruptly transformed into a stage of plentiful Meiyu from 1979 to 1999. The average Meiyu amount of the latter 21 years increased by 66% compared with that of the former 21 years, accompanied by a significant increase in the occurrence of summer floods in the MLY. This change was closely related with the frequent phenomenon of postponed Meiyu ending dates (MED) and later onset dates of high summer (ODHS) in the MLY. To a considerable degree, this reflects an abrupt change of the summer climate in East China. Further analysis showed that the preceding factors contributing to inter-annual changes in Meiyu in the two 21-year stages delimited above were also very different from each other. The causes of change were associated with the following: China’s industrialization has greatly accelerated since the 1970s, accompanied by an increase in atmospheric pollution and a reduction of the solar radiation reaching the ground. The sand area of North China has also expanded due to overgrazing. The enhanced greenhouse effect is manifested in warm winters (especially in February). Meanwhile, the January precipitation of the MLY has for the most part increased, and El Ni?o events have occurred more frequently since the late 1970s. A correlative scatter diagram consisting of these five factors mentioned above clearly shows that the two stages with opposite Meiyu characteristics are grouped in two contrasting locations with very different environmental (land-atmosphere) conditions. It is quite possible that we are now entering a new stage of lesser Meiyu, beginning in 2000.展开更多
By using the 40-year NCEP (1958-1997) grid point reanalysis meteorological data, we analyzed the inter-decadal variation on the climatic characteristics of the onset of South China Sea summer monsoon. The results are ...By using the 40-year NCEP (1958-1997) grid point reanalysis meteorological data, we analyzed the inter-decadal variation on the climatic characteristics of the onset of South China Sea summer monsoon. The results are as follows. (1) There was great difference on the onset date of the SCS summer monsoon between the first two decades and the last two decades. It was late on the 6th pentad of May for the first two decades and was on the 4th and 5th pentad of May for the next two decades. (2) Except for the third decade (1978-1987), the establishment of the monsoon rainfall was one to two pentads earlier than the onset of the summer monsoon in all other three decades. (3) The onset of the SCS monsoon is the result of the abrupt development and eastward advancement of the southwesterly monsoon over the Bay of Bengal. The four-decade analysis shows that there were abrupt development of the southwesterly monsoon over the Bay of Bengal between the 3rd and 4th pentad of May, but there was great difference between its eastward movement and its onset intensity. These may have important effect to the earlier or later onset of the SCS summer monsoon. (4) During the onset of the SCS summer monsoon, there were great difference in the upper and lower circulation feature between the first two and the next two decades. At the lower troposphere of the first two decades, the Indian-Burma trough was stronger and the center of the subtropical high was located more eastward. At the upper troposphere, the northward movement of the center of subtropical high was large and located more northward after it landed on the Indo-China Peninsula. After comparison, we can see that the circulation feature of the last two decades was favorable to the establishment and development of the SCS summer monsoon.展开更多
基金supported by the China Meteorological Administration(GYHY200706010,GYHY200806010)the Major State Basic Research Development Program of China under Grant Nos2006CB403603 and 2005CB321703the National Natural Science Foundation of China under Grant Nos40523001,40625014,and 90711004
文摘The authors have developed an integral view of the inter-decadal variability of July-August (JA) tropospheric temperature across the entire subtropical Northern Hemisphere. Using reanalysis data and complementary balloon-borne measurements, the authors identify one major mode of variability for the period 1958 2001 which exhibits a significant cooling center over East Asia and warming centers over the North Atlantic and North Pacific. The cooling (warming) signals barotropically penetrate through the troposphere, with the strongest anomalies at 200-300 hPa. The amplitude of the cooling over East Asia is stronger than that of the warming over the North Atlantic (North Pacific) by a factor of 2 (3). This dominant mode exhibits a declining tendency for the entire period examined, particularly before 1980. After the mid-1980s, the tendency has leveled off. Variations of the harmonious change of JA upper tropospheric temperature represented by the principal component of Empirical Orthogonal Function analysis exhibit significant negative (positive) correlations with SST anomalies in the eastern tropical Pacific and the western tropical Indian Ocean (mid-latitude North Pacific). Possible mechanisms are discussed.
基金jointly supported by the National Basic Research Program(2012CB955603,2010CB950302)National High Technology Research and Development Program of China(No.2010AA012304)the Knowledge Innovation Program of the Chinese Academy of Sciences(SQ201006 and XDA05090404)
文摘Empirical orthogonal function (EOF) analysis reveals a co-variability of Sea surface temperatures (SSTs) in the Southern Hemisphere (0°-60°S). In the South Indian and Atlantic Oceans, there is a subtropical dipole pattern slanted in the southwest-northeast direction. In the South Pacific Ocean, a meridional tripole structure emerges, whose middle pole co-varies with the dipoles in the South Indian and Atlantic Oceans and is used in this study to track subtropical Pacific variability. The South Indian and Atlantic Ocean dipoles and the subtropical Pacific variability are phase-locked in austral summer. On the inter-decadal time scales, the dipoles in the South Indian and Atlantic Oceans weaken in amplitude after 1979/1980. No such weakening is found in the subtropical South Pacific Ocean. Interestingly, despite the reduced amplitude, the correlation of the Indian Ocean and Atlantic dipoles with E1 Nino and Southern Oscillation (ENSO) are enhanced after 1979/1980. The same increase in correlation is found for subtropical South Pacific variability after 1979/1980. These inter-decadal modulations imply that the Southern Hemisphere participates in part of the climate shift in the late 1970s. The correlation between Southern Hemisphere SST and ENSO reduces after 2000.
基金National Basic Research Program of China(No.2010CB950404,No.2013CB430202)National Natural Science Foundation of China(No.41130960)
文摘The present paper presents a concise summary of our recent studies on the Asian summer monsoon,with highting decadal and inter- decadal scales. The studies on the long- term variations of the Asian summer monsoon and its impacts on the change in the summer precipitation in China are reviewed. Moreover,recent changes in the Asian summer monsoon and summer precipitation in East Asia(including Meiyu precipitation)are discussed. Finally,the future changes of the Asian summer monsoon are also pointed out in this paper.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 40775048 and 41075058)the Special Scientific Research Fund of Public Welfare Profession of China (Grant No. GYHY201106016)
文摘In this paper, we report on the results of an investigation into inter-decadal changes in moisture transport and divergence in East Asia for the two periods 1980-2001 and 1958 1979. The aim is to explore the mechanism of summer rainfall change in the region after abrupt changes. The relevant changes are calculated using ERA-40 daily reanalysis datasets. The results show that both stationary and transient eddy moisture transports to the Chinese mainland have declined since the abrupt change in atmospheric general circulation in the late 1970s, leading to more rainfall in South China and less in the North. The anomalous rainfall pattern coincides well with anomalous large-scale moisture divergence in the troposphere, of which stationary-wave or monsoon transport is dominant, in comparison with the contribution of the transient eddies. F^rthermore, their divergences are found to be in opposite phases. In addition, meridional divergence is more important than its zonal counterpart, with an opposite phase in East Asia. Abnormal zonal moisture convergences appear in northwestern and northeastern parts of China, and are related to the excess rainfalls in these regions. An increase in transient eddy activity is one of the major mechanisms for excess rainfall in northern Xinjiang. Consequently, the anomalous rainfall pattern in East Asia results from a decline of the East Asian monsoon after the abrupt change, while the rainfall increase in northwestern China involves anomalies of both stationary waves and transient eddies on boreal westerly over the mid- and high latitudes.
文摘In this paper,the intensity index of East Asian summer monsoon in northeast China was defined objectively by using NCEP/NCAR daily reanalysis data and national precipitation data from 1961 to 2004.In the inter-decadal time scales,the correlations between sea-level pressure field,850 hPa flow field,500 hPa geopotential height,sea surface temperature,Arctic sea ice concentration,a variety of oscillation indexes and intensity index of East Asian summer monsoon in northeast China were analyzed.The analysis showed that the great value area of correlations was consistent between sea-level pressure field,500 hPa geopotential height field and intensity index of East Asian summer monsoon in northeast China in pre-winter or summer,and the correlation was much better in summer than in pre-winter.The correlation was poor between the sea surface temperature and intensity index of East Asian summer monsoon in northeast China,but the correlation was good between the Arctic sea ice concentration and intensity index of East Asian summer monsoon in northeast China.The correlation was better between the NPO index and intensity index of East Asian summer monsoon in northeast China than other indexes.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.KZCX2-YW-Q11-03)
文摘Two inter-decadal shifts in East China summer rainfall during the last three decades of the 20th century have been identified.One shift occurred in the late 1970s and featured more rainfall in the Yangtze River valley and prolonged drought in North China.The other shift occurred in the early 1990s and featured increased rainfall in South China.The role of black carbon(BC) aerosol in the first shift event is controversial,and it has not been documented for the second event.In this study,the authors used Geophysical Fluid Dynamics Laboratory's(GFDL's) atmospheric general circulation model known as Atmosphere and Land Model(AM2.1) ,which has been shown to capture East Asian climate variability well,to investigate these issues by conducting sensitive experiments with or without historical BC in East Asia. The results suggest that the model reproduces the first shift well,including intensified rainfall in the Yangtze River and weakened monsoonal circulation.However,the model captures only a fraction of the observed variations for the second shift event.Thus,the role of BC in modulating the two shift events is different,and its impact is relatively less important for the early 1990s event.
基金supported by the National Natural Science Foundation of China (Grant No40233037)
文摘The strongest change in Meiyu periods in the mid-lower Yangtze Basin (MLY) since 1885 occurred in the late 1970s: a stage of weak Meiyu from 1958 to 1978 abruptly transformed into a stage of plentiful Meiyu from 1979 to 1999. The average Meiyu amount of the latter 21 years increased by 66% compared with that of the former 21 years, accompanied by a significant increase in the occurrence of summer floods in the MLY. This change was closely related with the frequent phenomenon of postponed Meiyu ending dates (MED) and later onset dates of high summer (ODHS) in the MLY. To a considerable degree, this reflects an abrupt change of the summer climate in East China. Further analysis showed that the preceding factors contributing to inter-annual changes in Meiyu in the two 21-year stages delimited above were also very different from each other. The causes of change were associated with the following: China’s industrialization has greatly accelerated since the 1970s, accompanied by an increase in atmospheric pollution and a reduction of the solar radiation reaching the ground. The sand area of North China has also expanded due to overgrazing. The enhanced greenhouse effect is manifested in warm winters (especially in February). Meanwhile, the January precipitation of the MLY has for the most part increased, and El Ni?o events have occurred more frequently since the late 1970s. A correlative scatter diagram consisting of these five factors mentioned above clearly shows that the two stages with opposite Meiyu characteristics are grouped in two contrasting locations with very different environmental (land-atmosphere) conditions. It is quite possible that we are now entering a new stage of lesser Meiyu, beginning in 2000.
基金National Scaling Project A The Scientific Experiment on South China Sea Monsoon Part I from the fund for (G1998040900)
文摘By using the 40-year NCEP (1958-1997) grid point reanalysis meteorological data, we analyzed the inter-decadal variation on the climatic characteristics of the onset of South China Sea summer monsoon. The results are as follows. (1) There was great difference on the onset date of the SCS summer monsoon between the first two decades and the last two decades. It was late on the 6th pentad of May for the first two decades and was on the 4th and 5th pentad of May for the next two decades. (2) Except for the third decade (1978-1987), the establishment of the monsoon rainfall was one to two pentads earlier than the onset of the summer monsoon in all other three decades. (3) The onset of the SCS monsoon is the result of the abrupt development and eastward advancement of the southwesterly monsoon over the Bay of Bengal. The four-decade analysis shows that there were abrupt development of the southwesterly monsoon over the Bay of Bengal between the 3rd and 4th pentad of May, but there was great difference between its eastward movement and its onset intensity. These may have important effect to the earlier or later onset of the SCS summer monsoon. (4) During the onset of the SCS summer monsoon, there were great difference in the upper and lower circulation feature between the first two and the next two decades. At the lower troposphere of the first two decades, the Indian-Burma trough was stronger and the center of the subtropical high was located more eastward. At the upper troposphere, the northward movement of the center of subtropical high was large and located more northward after it landed on the Indo-China Peninsula. After comparison, we can see that the circulation feature of the last two decades was favorable to the establishment and development of the SCS summer monsoon.