To maximize the aggregate throughput achieved in heterogeneous networks, this paper investigates inter-session network coding for the distribution of layered source data. We define inter-layer hierarchical random line...To maximize the aggregate throughput achieved in heterogeneous networks, this paper investigates inter-session network coding for the distribution of layered source data. We define inter-layer hierarchical random linear network codes (IHRLNC), which not only take the flexibility of intersession network coding for layer mixing but also consider the strict priority inherent in the layered source data. Furthermore, we propose the inter-layer hierarchical multicast (IHM), which performs IHRLNC in the network such that each sink can recover some source layers according to its individu- al capacity. To determine the optimal type of IHRLNC that should be performed on each edge in IHM, we formulate an optimization problem based on 0-1 integer linear programming, and propose a heuristic approach to approximate the optimal solution in polynomial time. Simulation results show that the proposed IHM can achieve throughput gains over the layered muhicast schemes.展开更多
This paper studies the target controllability of multilayer complex networked systems,in which the nodes are highdimensional linear time invariant(LTI)dynamical systems,and the network topology is directed and weighte...This paper studies the target controllability of multilayer complex networked systems,in which the nodes are highdimensional linear time invariant(LTI)dynamical systems,and the network topology is directed and weighted.The influence of inter-layer couplings on the target controllability of multi-layer networks is discussed.It is found that even if there exists a layer which is not target controllable,the entire multi-layer network can still be target controllable due to the inter-layer couplings.For the multi-layer networks with general structure,a necessary and sufficient condition for target controllability is given by establishing the relationship between uncontrollable subspace and output matrix.By the derived condition,it can be found that the system may be target controllable even if it is not state controllable.On this basis,two corollaries are derived,which clarify the relationship between target controllability,state controllability and output controllability.For the multi-layer networks where the inter-layer couplings are directed chains and directed stars,sufficient conditions for target controllability of networked systems are given,respectively.These conditions are easier to verify than the classic criterion.展开更多
Wire-arc additive manufacture(WAAM)has great potential for manufacturing of Al-Cu components.However,inferior mechanical properties of WAAM deposited material restrict its industrial application.Inter-layer cold rolli...Wire-arc additive manufacture(WAAM)has great potential for manufacturing of Al-Cu components.However,inferior mechanical properties of WAAM deposited material restrict its industrial application.Inter-layer cold rolling and thermo-mechanical heat treatment(T8)with pre-stretching deformation between solution and aging treatment were adopted in this study.Their effects on hardness,mechanical properties and microstructure were analyzed and compared to the conventional heat treatment(T6).The results show that cold rolling increases the hardness and strengths,which further increase with T8 treatment.The ultimate tensile strength(UTS)of 513 MPa and yield stress(YS)of 413 MPa can be obtained in the inter-layer cold-rolled sample with T8 treatment,which is much higher than that in the as-deposited samples.The cold-rolled samples show higher elongation than that of as-deposited ones due to significant elimination of porosity in cold rolling;while both the T6 and T8 treatments decrease the elongation.The cold rolling and pre-stretching deformation both contribute to the formation of dense and dispersive precipitatedθ′phases,which inhibits the dislocation movement and enhances the strengths;as a result,T8 treatment shows better strengthening effect than the T6 treatment.The strengthening mechanism was analyzed and it was mainly related to work hardening and precipitation strengthening.展开更多
为高效精确模拟航空动力系统的液态燃料横向射流多尺度雾化过程,分别采用离散相模型(discrete phase model,DPM)、流体体积(volume of fluid,VOF)法耦合DPM(VOF-DPM)对横向射流雾化过程进行数值模拟,对比2种模型对横向射流雾化过程的仿...为高效精确模拟航空动力系统的液态燃料横向射流多尺度雾化过程,分别采用离散相模型(discrete phase model,DPM)、流体体积(volume of fluid,VOF)法耦合DPM(VOF-DPM)对横向射流雾化过程进行数值模拟,对比2种模型对横向射流雾化过程的仿真结果,并研究模型转换直径与破碎模型对横向射流雾化过程仿真结果的影响。仿真结果表明:相比DPM,VOF-DPM仿真得到的射流穿透深度更接近试验结果,射流雾化过程更真实,并且能够捕捉到更详细的流场信息;当模型转换直径较小时,不能转换为离散相颗粒的液滴相对较多,这些液滴仍由VOF求解,并阻挡气流导致在其周围产生小涡团;添加破碎模型对射流穿透深度和流场结构几乎没有影响,但导致离散相颗粒继续破碎成更多更小的颗粒。展开更多
A comprehensive numerical study on the three-dimensional structure of a turbulent jet in crossflow is performed. The jet-to-crossflow velocity ratio (R) varies in the range of 2 - 16; both vertical jets and inclined j...A comprehensive numerical study on the three-dimensional structure of a turbulent jet in crossflow is performed. The jet-to-crossflow velocity ratio (R) varies in the range of 2 - 16; both vertical jets and inclined jets without excess streamwise momentum are considered. The numerical results of the Standard two-equation k-ε model show that the turbulent structure can be broadly categorised according to the jet-to-crossflow velocity ratio. For strong to moderate jet discharges, i.e. R> 4, the jet is characterized by a longitudinal transition through a bent-over phase during which the jet becomes almost parallel with the main freestream, to a sectional vortex-pair flow with double concentration maxima; the computed flow details and scalar mixing characteristics can be described by self-similar relations beyond a dimensionless distance of around 20-60. The similarity coefficients are only weakly dependent on R. The cross-section scalar field is kidney-shaped and bifurcated, vvith distinct double concentration maxima; the aspect ratio is found to be around 1.2. A loss in vertical momentum is ob-served and the added mass coefficient of the jet motion is found to be approximately 1. On the other hand, for weak jets in strong crossflow, i. e. R ≥ 2, the lee of the jet is characterized by a negative pressure region. Although the double vortex flow can stili be noted, the scalar field becomes more symmetrical and no longer bifurcated. The similarity coeffcients are al-so noticeably different. The predicted jet flovv characteristics and mixing rates are well supported by experimental and field dala展开更多
The mixing and merging characteristics of multiple tandem jets in crossflow are investigated by use of the Computational Fluid Dynamics (CFD) code FI,UENT. The realizable k - ε model is employed for turbulent elosu...The mixing and merging characteristics of multiple tandem jets in crossflow are investigated by use of the Computational Fluid Dynamics (CFD) code FI,UENT. The realizable k - ε model is employed for turbulent elosure of the Reynolds-averaged Navier-Stokes equations. Numerical experiments are performed for 1-, 2- and 4-jet groups, tbr jet-tocrossflow velocity ratios of R = 4.2 ~ 16.3. The computed velocity and scalar concentration field are in good agreement with experiments using Particle Image Velocimetry (PIV) and Laser Induced Fluorescence (LIF), as well as previous work. The results show that the leading jet behavior is similar to a single free jet in crossflow, while all the downstream rear jets have less bent-over jet trajectories - suggesting a reduced ambient velocity for the rear jets. The concentration decay of the leading jet is greater than that of the rear jets. When normalized by appropriate crossflow momentum length scales, all jet trajectories follow a universal relation regardless of the sequential order of jet position and the nund)er of jets. Supported by the velocity and trajectory measurements, the averaged maximum effective crossflow velocity ratio is computed to be in the range of 0.39 to 0.47.展开更多
Numerical investigation of a transverse sonic jet injected into a supersonic crossflow was carried out using large-eddy simulation for a free-stream Mach number M = 1.6 and a Reynolds number Re = 1.38×10~5 based ...Numerical investigation of a transverse sonic jet injected into a supersonic crossflow was carried out using large-eddy simulation for a free-stream Mach number M = 1.6 and a Reynolds number Re = 1.38×10~5 based on the jet diameter.Effects of the jet-to-crossflow momentum ratio on various fundamental mechanisms dictating the intricate flow phenomena,including flow structures, turbulent characters and frequency behaviors,have been studied.The complex flow structures and the relevant flow features are discussed to exhibit the evolution of shock structures,vortical structures and jet shear layers.The strength of the bow shock increases and the sizes of the barrel shock and Mach disk also increase with increasing momentum ratio.Turbulent characters are clarified to be closely related to the flow structures.The jet penetration increases with the increase of the momentum ratio.Moreover,the dominant frequencies of the flow structures are obtained using spectral analysis.The results obtained in this letter provide physical insight in understanding the mechanisms relevant to this complex flow展开更多
To further extend knowledge about the detailed knowledge on the crossflow characteristics in a multi-jets system under a confined space,particle image velocimetry (PIV) was employed to investigate the flow structures ...To further extend knowledge about the detailed knowledge on the crossflow characteristics in a multi-jets system under a confined space,particle image velocimetry (PIV) was employed to investigate the flow structures together with the distributions of the mean velocity components for Reynolds numbers (Re) ranging from 6 213 to 13 418,nozzle-to-plate spacing (H/D) varying from 0. 20 to1. 25,respectively. Results show that the crossflow configuration is significantly different from those of large nozzle-to-plate spacing. In addition,a turning point H/D=0.50 is revealed in the profile of the normalized maximum radial velocity which is associated with the heat transfer distribution on the impingement plate.展开更多
The objective of this dissertation is to investigate the impinging jet under the influence of crossflow. It has been known that there exist jet shear layer, impingement on the bottom wall, interactions between the ind...The objective of this dissertation is to investigate the impinging jet under the influence of crossflow. It has been known that there exist jet shear layer, impingement on the bottom wall, interactions between the induced wall jet and the ambient crossflow in near field. There are few intensive studies of the impinging jet in crossflow at home and abroad due to the complexities of flow, such as the formation and evolution of the vortical structures, interactions among vortices, while researches on the temporal and spatial evolution of these vortical structures can promote the practical applications in environment engineering, hydroelectricity engineering, etc., and provide the basis for flow control and improvement through revealing the inherent mechanism and development of the vortical structures.展开更多
The nth-order expansion of the parabolized stability equation (EPSEn) is obtained from the Taylor expansion of the linear parabolized stability equation (LPSE) in the streamwise direction. The EPSE together with t...The nth-order expansion of the parabolized stability equation (EPSEn) is obtained from the Taylor expansion of the linear parabolized stability equation (LPSE) in the streamwise direction. The EPSE together with the homogeneous boundary conditions forms a local eigenvalue problem, in which the streamwise variations of the mean flow and the disturbance shape function are considered. The first-order EPSE (EPSE1) and the second-order EPSE (EPSE2) are used to study the crossflow instability in the swept NLF(2)-0415 wing boundary layer. The non-parallelism degree of the boundary layer is strong. Compared with the growth rates predicted by the linear stability theory (LST), the results given by the EPSE1 and EPSE2 agree well with those given by the LPSE. In particular, the results given by the EPSE2 are almost the same as those given by the LPSE. The prediction of the EPSE1 is more accurate than the prediction of the LST, and is more efficient than the predictions of the EPSE2 and LPSE. Therefore, the EPSE1 is an efficient ey prediction tool for the crossflow instability in swept-wing boundary-layer flows.展开更多
In order to achieve uniform mixing between spray droplets and crossflow, cold-model experiment of a hollow-cone water spray in an air crossflow is investigated via a numerical simulation. The simulation cases are desi...In order to achieve uniform mixing between spray droplets and crossflow, cold-model experiment of a hollow-cone water spray in an air crossflow is investigated via a numerical simulation. The simulation cases are designed by using the orthogonal design method. The Eulerian-Lagrangian formulation is employed for modeling the droplets-crossflow two-phase flow while the realizable k-ε turbulence model is used to describe the turbulence. A new index, mixedness quality, is proposed to assess the overall mixing of the droplets in the crossflow. The simulation results demonstrate that the counter-rotating vortex pair (CVP) imposes a more significant impact on the spatial distribution than on the size distribution of the droplets. Pairs of CVP with smaller scales are preferable for achieving a better mixing. The influencing factors are listed in the following order in terms of the degree of their impact from the greatest to the least: the Sauter diameter of the initial droplets, the mixing tube diameter, the spray angle, the velocity of the inlet crossflow, and the vertical velocity of the initial droplets. A moderate droplet diameter, a smaller tube diameter, a moderate spray angle, a greater crossflow velocity and a moderate vertical velocity of the droplet are favorable for achieving a higher mixedness quality of the jet spray in a confined crossflow.展开更多
Numerical simulations using volume of fluid(VOF)method are performed to study the impact of liquid-to-gas density ratio on the trajectory of nonturbulent liquid jets in gaseous crossflows.In this paper,large eddy simu...Numerical simulations using volume of fluid(VOF)method are performed to study the impact of liquid-to-gas density ratio on the trajectory of nonturbulent liquid jets in gaseous crossflows.In this paper,large eddy simulation(LES)turbulence model is coupled with the VOF method to describe the turbulence effects accurately.In addition,dynamic adaptive mesh refinement method with two refinement levels is applied to refine the size of the cells located at gas-liquid interface.Density ratio is changed from 10 to 5000 while other nondimensional numbers are kept constant.Large density ratios are considered in this paper since they are common in many practical applications such as solution precursor/suspension plasma sprays.Our simulations show that the penetration height,especially in the farfield,increases as the density ratio increases.A general correlation for the jet trajectory,which can be used for a wide range of density ratios,is developed based on our simulation results.展开更多
The large-scale vortical structures produced by an impinging density jet in shallow crossflow were numerically investigated in detail using RNG turbulence model. The scales, formation mechanism and evolution feature o...The large-scale vortical structures produced by an impinging density jet in shallow crossflow were numerically investigated in detail using RNG turbulence model. The scales, formation mechanism and evolution feature of the upstream wall vortex in relation to stagnation point and the Scarf vortex in near field were analyzed. The computed characteristic scales of the upstream vortex show distinguished three-dimensionality and vary with the velocity ratio and the water depth. The Scarf vortex in the near field plays an important role in the lateral concentration distributions of the impinging jet in crossflow. When the velocity ratio is relatively small, there exists a distinct lateral high concentration aggregation zone at the lateral edge between the bottom layer wall jet and the ambient crossflow, which is dominated by the Scarf vortex in the near field.展开更多
The shear-thinning/thickening effects on the plane Couette-Poiseuille flow with a uniform crossflow are studied. The detailed solution procedures for both theo- retical and numerical purposes are given. In order to cl...The shear-thinning/thickening effects on the plane Couette-Poiseuille flow with a uniform crossflow are studied. The detailed solution procedures for both theo- retical and numerical purposes are given. In order to clarify the difference between the Newtonian flow and the power-law flow, all cases of the plane Couette-Poiseuille flows with uniform crossflows for different power indexes are assigned to the phase diagram in the parameter plane corresponding to the Couette number and the crossflow Reynolds number. The effects of shear-thinning/thickening on the phase diagram are discussed. An important feature of the shear-thinning circumstance distinguished from the shear- thickening circumstance is discovered.展开更多
基金Supported by the National Natural Science Foundation of China ( No. 60832001 ).
文摘To maximize the aggregate throughput achieved in heterogeneous networks, this paper investigates inter-session network coding for the distribution of layered source data. We define inter-layer hierarchical random linear network codes (IHRLNC), which not only take the flexibility of intersession network coding for layer mixing but also consider the strict priority inherent in the layered source data. Furthermore, we propose the inter-layer hierarchical multicast (IHM), which performs IHRLNC in the network such that each sink can recover some source layers according to its individu- al capacity. To determine the optimal type of IHRLNC that should be performed on each edge in IHM, we formulate an optimization problem based on 0-1 integer linear programming, and propose a heuristic approach to approximate the optimal solution in polynomial time. Simulation results show that the proposed IHM can achieve throughput gains over the layered muhicast schemes.
基金supported by the National Natural Science Foundation of China (U1808205)Hebei Natural Science Foundation (F2000501005)。
文摘This paper studies the target controllability of multilayer complex networked systems,in which the nodes are highdimensional linear time invariant(LTI)dynamical systems,and the network topology is directed and weighted.The influence of inter-layer couplings on the target controllability of multi-layer networks is discussed.It is found that even if there exists a layer which is not target controllable,the entire multi-layer network can still be target controllable due to the inter-layer couplings.For the multi-layer networks with general structure,a necessary and sufficient condition for target controllability is given by establishing the relationship between uncontrollable subspace and output matrix.By the derived condition,it can be found that the system may be target controllable even if it is not state controllable.On this basis,two corollaries are derived,which clarify the relationship between target controllability,state controllability and output controllability.For the multi-layer networks where the inter-layer couplings are directed chains and directed stars,sufficient conditions for target controllability of networked systems are given,respectively.These conditions are easier to verify than the classic criterion.
基金Project(ZZYJKT2024-08)supported by the State Key Laboratory of Precision Manufacturing for Extreme Service Performance,ChinaProject(2022JB11GX004)supported by Selection of the best Candidates to Undertake Key Research Projects by Dalian City,ChinaProject(201806835007)supported by China Scholarship Council。
文摘Wire-arc additive manufacture(WAAM)has great potential for manufacturing of Al-Cu components.However,inferior mechanical properties of WAAM deposited material restrict its industrial application.Inter-layer cold rolling and thermo-mechanical heat treatment(T8)with pre-stretching deformation between solution and aging treatment were adopted in this study.Their effects on hardness,mechanical properties and microstructure were analyzed and compared to the conventional heat treatment(T6).The results show that cold rolling increases the hardness and strengths,which further increase with T8 treatment.The ultimate tensile strength(UTS)of 513 MPa and yield stress(YS)of 413 MPa can be obtained in the inter-layer cold-rolled sample with T8 treatment,which is much higher than that in the as-deposited samples.The cold-rolled samples show higher elongation than that of as-deposited ones due to significant elimination of porosity in cold rolling;while both the T6 and T8 treatments decrease the elongation.The cold rolling and pre-stretching deformation both contribute to the formation of dense and dispersive precipitatedθ′phases,which inhibits the dislocation movement and enhances the strengths;as a result,T8 treatment shows better strengthening effect than the T6 treatment.The strengthening mechanism was analyzed and it was mainly related to work hardening and precipitation strengthening.
文摘为高效精确模拟航空动力系统的液态燃料横向射流多尺度雾化过程,分别采用离散相模型(discrete phase model,DPM)、流体体积(volume of fluid,VOF)法耦合DPM(VOF-DPM)对横向射流雾化过程进行数值模拟,对比2种模型对横向射流雾化过程的仿真结果,并研究模型转换直径与破碎模型对横向射流雾化过程仿真结果的影响。仿真结果表明:相比DPM,VOF-DPM仿真得到的射流穿透深度更接近试验结果,射流雾化过程更真实,并且能够捕捉到更详细的流场信息;当模型转换直径较小时,不能转换为离散相颗粒的液滴相对较多,这些液滴仍由VOF求解,并阻挡气流导致在其周围产生小涡团;添加破碎模型对射流穿透深度和流场结构几乎没有影响,但导致离散相颗粒继续破碎成更多更小的颗粒。
文摘A comprehensive numerical study on the three-dimensional structure of a turbulent jet in crossflow is performed. The jet-to-crossflow velocity ratio (R) varies in the range of 2 - 16; both vertical jets and inclined jets without excess streamwise momentum are considered. The numerical results of the Standard two-equation k-ε model show that the turbulent structure can be broadly categorised according to the jet-to-crossflow velocity ratio. For strong to moderate jet discharges, i.e. R> 4, the jet is characterized by a longitudinal transition through a bent-over phase during which the jet becomes almost parallel with the main freestream, to a sectional vortex-pair flow with double concentration maxima; the computed flow details and scalar mixing characteristics can be described by self-similar relations beyond a dimensionless distance of around 20-60. The similarity coefficients are only weakly dependent on R. The cross-section scalar field is kidney-shaped and bifurcated, vvith distinct double concentration maxima; the aspect ratio is found to be around 1.2. A loss in vertical momentum is ob-served and the added mass coefficient of the jet motion is found to be approximately 1. On the other hand, for weak jets in strong crossflow, i. e. R ≥ 2, the lee of the jet is characterized by a negative pressure region. Although the double vortex flow can stili be noted, the scalar field becomes more symmetrical and no longer bifurcated. The similarity coeffcients are al-so noticeably different. The predicted jet flovv characteristics and mixing rates are well supported by experimental and field dala
基金The workis supported by a grant fromthe Hong Kong Research Grants Council (HKU7347/01E) Programfor NewCentury Excellent Talents in University (NCET-04-0494) the National Natural Science Foundation of China(Grant No.50479068)
文摘The mixing and merging characteristics of multiple tandem jets in crossflow are investigated by use of the Computational Fluid Dynamics (CFD) code FI,UENT. The realizable k - ε model is employed for turbulent elosure of the Reynolds-averaged Navier-Stokes equations. Numerical experiments are performed for 1-, 2- and 4-jet groups, tbr jet-tocrossflow velocity ratios of R = 4.2 ~ 16.3. The computed velocity and scalar concentration field are in good agreement with experiments using Particle Image Velocimetry (PIV) and Laser Induced Fluorescence (LIF), as well as previous work. The results show that the leading jet behavior is similar to a single free jet in crossflow, while all the downstream rear jets have less bent-over jet trajectories - suggesting a reduced ambient velocity for the rear jets. The concentration decay of the leading jet is greater than that of the rear jets. When normalized by appropriate crossflow momentum length scales, all jet trajectories follow a universal relation regardless of the sequential order of jet position and the nund)er of jets. Supported by the velocity and trajectory measurements, the averaged maximum effective crossflow velocity ratio is computed to be in the range of 0.39 to 0.47.
基金supported by the National Natural Science Foundation of China(11072236)the Fundamental Research Funds for the Central Universities(WK2090050007)
文摘Numerical investigation of a transverse sonic jet injected into a supersonic crossflow was carried out using large-eddy simulation for a free-stream Mach number M = 1.6 and a Reynolds number Re = 1.38×10~5 based on the jet diameter.Effects of the jet-to-crossflow momentum ratio on various fundamental mechanisms dictating the intricate flow phenomena,including flow structures, turbulent characters and frequency behaviors,have been studied.The complex flow structures and the relevant flow features are discussed to exhibit the evolution of shock structures,vortical structures and jet shear layers.The strength of the bow shock increases and the sizes of the barrel shock and Mach disk also increase with increasing momentum ratio.Turbulent characters are clarified to be closely related to the flow structures.The jet penetration increases with the increase of the momentum ratio.Moreover,the dominant frequencies of the flow structures are obtained using spectral analysis.The results obtained in this letter provide physical insight in understanding the mechanisms relevant to this complex flow
基金National Natural Science Foundation of China(51335002)
文摘To further extend knowledge about the detailed knowledge on the crossflow characteristics in a multi-jets system under a confined space,particle image velocimetry (PIV) was employed to investigate the flow structures together with the distributions of the mean velocity components for Reynolds numbers (Re) ranging from 6 213 to 13 418,nozzle-to-plate spacing (H/D) varying from 0. 20 to1. 25,respectively. Results show that the crossflow configuration is significantly different from those of large nozzle-to-plate spacing. In addition,a turning point H/D=0.50 is revealed in the profile of the normalized maximum radial velocity which is associated with the heat transfer distribution on the impingement plate.
文摘The objective of this dissertation is to investigate the impinging jet under the influence of crossflow. It has been known that there exist jet shear layer, impingement on the bottom wall, interactions between the induced wall jet and the ambient crossflow in near field. There are few intensive studies of the impinging jet in crossflow at home and abroad due to the complexities of flow, such as the formation and evolution of the vortical structures, interactions among vortices, while researches on the temporal and spatial evolution of these vortical structures can promote the practical applications in environment engineering, hydroelectricity engineering, etc., and provide the basis for flow control and improvement through revealing the inherent mechanism and development of the vortical structures.
基金supported by the National Natural Science Foundation of China(No.11332007)
文摘The nth-order expansion of the parabolized stability equation (EPSEn) is obtained from the Taylor expansion of the linear parabolized stability equation (LPSE) in the streamwise direction. The EPSE together with the homogeneous boundary conditions forms a local eigenvalue problem, in which the streamwise variations of the mean flow and the disturbance shape function are considered. The first-order EPSE (EPSE1) and the second-order EPSE (EPSE2) are used to study the crossflow instability in the swept NLF(2)-0415 wing boundary layer. The non-parallelism degree of the boundary layer is strong. Compared with the growth rates predicted by the linear stability theory (LST), the results given by the EPSE1 and EPSE2 agree well with those given by the LPSE. In particular, the results given by the EPSE2 are almost the same as those given by the LPSE. The prediction of the EPSE1 is more accurate than the prediction of the LST, and is more efficient than the predictions of the EPSE2 and LPSE. Therefore, the EPSE1 is an efficient ey prediction tool for the crossflow instability in swept-wing boundary-layer flows.
基金Supported by the National Natural Science Foundation of China(50823002)
文摘In order to achieve uniform mixing between spray droplets and crossflow, cold-model experiment of a hollow-cone water spray in an air crossflow is investigated via a numerical simulation. The simulation cases are designed by using the orthogonal design method. The Eulerian-Lagrangian formulation is employed for modeling the droplets-crossflow two-phase flow while the realizable k-ε turbulence model is used to describe the turbulence. A new index, mixedness quality, is proposed to assess the overall mixing of the droplets in the crossflow. The simulation results demonstrate that the counter-rotating vortex pair (CVP) imposes a more significant impact on the spatial distribution than on the size distribution of the droplets. Pairs of CVP with smaller scales are preferable for achieving a better mixing. The influencing factors are listed in the following order in terms of the degree of their impact from the greatest to the least: the Sauter diameter of the initial droplets, the mixing tube diameter, the spray angle, the velocity of the inlet crossflow, and the vertical velocity of the initial droplets. A moderate droplet diameter, a smaller tube diameter, a moderate spray angle, a greater crossflow velocity and a moderate vertical velocity of the droplet are favorable for achieving a higher mixedness quality of the jet spray in a confined crossflow.
文摘Numerical simulations using volume of fluid(VOF)method are performed to study the impact of liquid-to-gas density ratio on the trajectory of nonturbulent liquid jets in gaseous crossflows.In this paper,large eddy simulation(LES)turbulence model is coupled with the VOF method to describe the turbulence effects accurately.In addition,dynamic adaptive mesh refinement method with two refinement levels is applied to refine the size of the cells located at gas-liquid interface.Density ratio is changed from 10 to 5000 while other nondimensional numbers are kept constant.Large density ratios are considered in this paper since they are common in many practical applications such as solution precursor/suspension plasma sprays.Our simulations show that the penetration height,especially in the farfield,increases as the density ratio increases.A general correlation for the jet trajectory,which can be used for a wide range of density ratios,is developed based on our simulation results.
基金Project supported by the National Natural Science Foundation of China(No.10572084)Shanghai Leading Academic Discipline Project(No.Y0103)
文摘The large-scale vortical structures produced by an impinging density jet in shallow crossflow were numerically investigated in detail using RNG turbulence model. The scales, formation mechanism and evolution feature of the upstream wall vortex in relation to stagnation point and the Scarf vortex in near field were analyzed. The computed characteristic scales of the upstream vortex show distinguished three-dimensionality and vary with the velocity ratio and the water depth. The Scarf vortex in the near field plays an important role in the lateral concentration distributions of the impinging jet in crossflow. When the velocity ratio is relatively small, there exists a distinct lateral high concentration aggregation zone at the lateral edge between the bottom layer wall jet and the ambient crossflow, which is dominated by the Scarf vortex in the near field.
文摘The shear-thinning/thickening effects on the plane Couette-Poiseuille flow with a uniform crossflow are studied. The detailed solution procedures for both theo- retical and numerical purposes are given. In order to clarify the difference between the Newtonian flow and the power-law flow, all cases of the plane Couette-Poiseuille flows with uniform crossflows for different power indexes are assigned to the phase diagram in the parameter plane corresponding to the Couette number and the crossflow Reynolds number. The effects of shear-thinning/thickening on the phase diagram are discussed. An important feature of the shear-thinning circumstance distinguished from the shear- thickening circumstance is discovered.