The problem of two order statistics detection schemes for the detection of a spatially distributed target in white Gaussian noise are studied.When the number of strong scattering cells is known,we first show an optima...The problem of two order statistics detection schemes for the detection of a spatially distributed target in white Gaussian noise are studied.When the number of strong scattering cells is known,we first show an optimal detector,which requires many processing channels.The structure of such optimal detector is complex.Therefore,a simpler quasi-optimal detector is then introduced.The quasi-optimal detector,called the strong scattering cells’ number dependent order statistics(SND-OS) detector,takes the form of an average of maximum strong scattering cells with a known number.If the number of strong scattering cells is unknown in real situation,the multi-channel order statistics(MC-OS) detector is used.In each channel,a various number of maximums scattered from target are averaged.Then,the false alarm probability analysis and thresholds sets for each channel are given,following the detection results presented by means of Monte Carlo simulation strategy based on simulated target model and three measured targets.In particular,the theoretical analysis and simulation results highlight that the MC-OS detector can efficiently detect range-spread targets in white Gaussian noise.展开更多
With the development of graphic processing unit(GPU)power,it is now possible to implement geometric correction and edge blending functions on a single computer.However,the processing resources consumed by the geometri...With the development of graphic processing unit(GPU)power,it is now possible to implement geometric correction and edge blending functions on a single computer.However,the processing resources consumed by the geometric correction and edge blending phases still burden the system and slow down the main application considerably.A new platform independent scheme is proposed,minimizing the negative influence on performance.In this scheme,parameters for geometric correction and edge blending are firstly defined in an interactive way and recorded as a 32-bit high dynamic range(HDR) image,which is then used by high level shading language(HLSL) codes embedded in the main application as a lookup table,greatly reducing the computational complexity and enhancing flexibility.展开更多
基金supported by the Major Program of National Natural Science Foundation of China (10990012)the National Natural Science Foundation of China (61201296,61271024)+1 种基金the Fundamental Research Funds for the Central Universities (K5051202037)Guangxi Key Lab of Wireless Wideband Communication & Signal Processing (12205)
文摘The problem of two order statistics detection schemes for the detection of a spatially distributed target in white Gaussian noise are studied.When the number of strong scattering cells is known,we first show an optimal detector,which requires many processing channels.The structure of such optimal detector is complex.Therefore,a simpler quasi-optimal detector is then introduced.The quasi-optimal detector,called the strong scattering cells’ number dependent order statistics(SND-OS) detector,takes the form of an average of maximum strong scattering cells with a known number.If the number of strong scattering cells is unknown in real situation,the multi-channel order statistics(MC-OS) detector is used.In each channel,a various number of maximums scattered from target are averaged.Then,the false alarm probability analysis and thresholds sets for each channel are given,following the detection results presented by means of Monte Carlo simulation strategy based on simulated target model and three measured targets.In particular,the theoretical analysis and simulation results highlight that the MC-OS detector can efficiently detect range-spread targets in white Gaussian noise.
文摘With the development of graphic processing unit(GPU)power,it is now possible to implement geometric correction and edge blending functions on a single computer.However,the processing resources consumed by the geometric correction and edge blending phases still burden the system and slow down the main application considerably.A new platform independent scheme is proposed,minimizing the negative influence on performance.In this scheme,parameters for geometric correction and edge blending are firstly defined in an interactive way and recorded as a 32-bit high dynamic range(HDR) image,which is then used by high level shading language(HLSL) codes embedded in the main application as a lookup table,greatly reducing the computational complexity and enhancing flexibility.