The footprints of water and nitrogen(WF and NF)provide a comprehensive overview of the type and quantity of water consumption and reactive nitrogen(Nr)loss in crop production.In this study,a field experiment over two ...The footprints of water and nitrogen(WF and NF)provide a comprehensive overview of the type and quantity of water consumption and reactive nitrogen(Nr)loss in crop production.In this study,a field experiment over two years(2019 and 2020)compared three integrated agronomic practice management(IAPM)systems:An improved management system(T2),a high-yield production system(T3),and an integrated soil-crop management system(ISCM)using a local smallholder farmer’s practice system(T1)as control,to investigate the responses of WF,Nr losses,water use efficiency(WUE),and nitrogen use efficiency(NUE)to IAPM.The results showed that IAPM optimized water distribution and promoted water use by summer maize.The evapotranspiration over the whole maize growth period of IAPM increased,but yield increased more,leading to a significant increase in WUE.The WUE of the T2,T3,and ISCM treatments was significantly greater than in the T1 treatment,in 2019 and 2020respectively,by 19.8-21.5,31.8-40.6,and 34.4-44.6%.The lowest WF was found in the ISCM treatment,which was 31.0%lower than that of the T1 treatment.In addition,the ISCM treatment optimized soil total nitrogen(TN)distribution and significantly increased TN in the cultivated layer.Excessive nitrogen fertilizer was applied in treatment T3,producing the highest maize yield,and resulting in the highest Nr losses.In contrast,the ISCM treatment used a reduced nitrogen fertilizer rate,sacrificing grain yield partly,which reduced Nr losses and eventually led to a significant increase in nitrogen use efficiency and nitrogen recovery.The Nr level in the ISCM treatment was34.8%lower than in the T1 treatment while NUE was significantly higher than in the T1 treatment by 56.8-63.1%in2019 and 2020,respectively.Considering yield,WUE,NUE,WF,and NF together,ISCM should be used as a more sustainable and clean system for sustainable production of summer maize.展开更多
Inter-plant heat integration is an effective way for energy recovery in process industry. Although inter-plant heat integration can significantly reduce energy consumption, it is not widely applied in the multiple sta...Inter-plant heat integration is an effective way for energy recovery in process industry. Although inter-plant heat integration can significantly reduce energy consumption, it is not widely applied in the multiple stakeholders’ situation due to profit or cost distribution problems. Therefore, this work considers both the technique aspects of heat integration and its business aspects between stakeholders simultaneously. The new proposed methodology consists of three steps. Firstly the optimal matching of heat integration between plants is obtained through mathematical programming. Then the cost distribution is decided through game theory. Finally the cost distribution obtained previous is corrected by an ideal expert model. A case study is used to illustrate the effectiveness of the method in the end of the work.展开更多
Taking the planning and major architectural design projects of Anqing Children Welfare Home for example,through the research on categories and each component of solar water heating system,the paper discussed strategie...Taking the planning and major architectural design projects of Anqing Children Welfare Home for example,through the research on categories and each component of solar water heating system,the paper discussed strategies and methods to realize solar energy and architectural integration design in the climate condition and location environment of Anhui Province.展开更多
The green high-yield and high-efficiency cultivation techniques of integrated management of water and fertilizer for maize under mulch drip irrigation are described from the aspects of high yield target of maize and i...The green high-yield and high-efficiency cultivation techniques of integrated management of water and fertilizer for maize under mulch drip irrigation are described from the aspects of high yield target of maize and its component factor indexes,pre-sowing preparation,sowing,post-sowing management,field management at the seedling stage,integrated management of water and fertilizer for target yield of maize,rational application of micro-fertilizer,comprehensive prevention and control of diseases and pests,timely harvest,etc.,in order to provide a reference for agricultural technicians,maize farmers and maize industry development in northern Xinjiang.展开更多
This review provides an insight and up-to-date information on the application of Moringa oleifera seeds, the short falls of existing technologies as a coagulant and disinfectant in domestic water treatment. While the ...This review provides an insight and up-to-date information on the application of Moringa oleifera seeds, the short falls of existing technologies as a coagulant and disinfectant in domestic water treatment. While the coagulant properties are well reported, the disinfectant properties are not well studied. Literatures on low cost alternative technologies such as the application of hiocoagulants and slow sand filters are extensively reported. However, there is limited work addressing the limitations of these technologies that have restricted its widespread use to solve the global soaring water crises. Slow sand filters have a very slow filtration rate that depends on the biofilm layer which takes about 17 days to form. Moringa oleifera treated water cannot last more than 48 hours without bacteria regrowth. Investigation of the best method of isolating coagulant component continues with differing opinions over the nature of its coagulant ingredient not resolved in ongoing literature. An attempt was made in this paper to highlight the advantages of a Moringa disinfectant sand filter hybrid system that can purify water. Microbiological advantages of this system in providing a 100% removal of pathogens, and engineering considerations such as water treatment within an hour residence time, faster flow rates, less clogging and backwashing could be some of the advantages ofa Moringa sand filter system. The need to focus on integrating Moringa and sand filter systems for more practical applications is recommended.展开更多
It is complicated to model the acoustic field in stratified ocean for airborne aircraft,due to high speed of the source and air-to-water sound transmission.To our knowledge,there are very few papers in the open litera...It is complicated to model the acoustic field in stratified ocean for airborne aircraft,due to high speed of the source and air-to-water sound transmission.To our knowledge,there are very few papers in the open literature dealing with this complicated problem;but,in our opinion,they all require great amount of computation.We now propose a different method that requires much less computation.We improve the wavenumber integration method to model the received temporal signal for a moving source in stratified ocean and sum up in a concise form the core of our paper as follows:(A) Eq.(11) can be calculated by means of fast Chirp Z transform and the signals at all N time points are generated simultaneously;(B) direct numerical evaluation of the wavenumber integral in Eq.(4) produces large numerical errors;so it is necessary to shift the integration slightly below the real axis;(C) we compare the computation cost of direct calculation method with that of our fast calculation method;from the results presented in table 1,we can see that the fast calculation method consumes much less computation time,particularly for long duration signals;(D) for an airborne rapidly moving source,we compute the Doppler-shifted signals in shallow water and analyze their short-time Fourier transform;from Fig.1b,we can see that the received signals have multiple frequency components for a tonal source due to source motion and that each component corresponds to an arrival path.展开更多
The present study concerns the revalorization of drained water from aquaculture ponds rearing Clarias gariepinus on okra crops. The rearing was carried out at the farm of Gaston Berger University in 100 m2 ponds. In e...The present study concerns the revalorization of drained water from aquaculture ponds rearing Clarias gariepinus on okra crops. The rearing was carried out at the farm of Gaston Berger University in 100 m2 ponds. In each pond, the individuals of C. garipinus with an average weight of 6 ± 0.3 g were stocked at a density of 11 per m2. The water temperature and pH were measured during the experiment. The control fishing is carried out every month to monitor variations in the weight and size of reared individuals. The plant production is carried out in elementary plots measuring 3 m × 1.5 m. Each plot was fertilized with either: drained water from C. gariepinus rearing (DWC), poultry droppings (PD), cow dung (CD) and mineral fertilizer (NPK). Treatments are carried out in tripliqua with either river water (RW), RW + the recommended dose of NPK (RD-NPK), RW + RD-PD, RW + RD-CD, DWC, DWC + 25% RD-NPK, DWC + 50% RD-NPK, DWC + 75% RD-NPK, DWC + 25% RD-PD, DWC + 50% RD-PD, DWC + 75% RD-PD, DWC + 25% RD-CD, DWC + 50% RD-CD, DWC + 75% RD-CD. Growth parameters and yield of okra were determined. The average temperature in the rearing environment was 27.6 ± 1.5˚C and pH 7.9 ± 1.1. After six (06) months of rearing, C. gariepinus individuals reached an average weight of 850.12 ± 1.3 g and an average height of 52.44 ± 1.1 cm. The daily weight gain and specific growth rates over this period were 3.9 g per day and 2.8% per day, respectively. The treatment T1 (RW + DR-NPK) gave the highest mean collar diameter and mean plant height with 2.3 ± 0.9 cm and 61.6 ± 32 cm, respectively. In T4 (DWC), the mean height of plants was 38.8 ± 23.5 cm and mean collar diameter 1.4 ± 0.8 cm. The growth performance in T4 was comparable to that of RD-CD (T3), but different from RD-NPK (T1) and RD-PD (T2). The highest average number, average weight, average length and average diameter of fruits were noted in treatments T13 (RW + RD-75%CD) and T7 (DWC + 75% RD-NPK). The best yields were noted in T1 (RW + RD-NPK) = 10.8 ± 5.4 t·ha−1, T5 (DWC + 25% RD-NPK) = 9.2 ± 4.6 t·ha−1 and T4 (DWC) = 8.6 ± 4.3 t·ha−1 which are comparable and higher than those obtained in T2 = 5.7 ± 2.8 t·ha−1 and T3 = 7.5 ± 3.8 t·ha−1.展开更多
The integration of water and fertilizer is a comprehensive technology combined irrigation and fertilizer, which has outstanding advantages of saving fertilizer, saving water, saving labor, protecting environment, high...The integration of water and fertilizer is a comprehensive technology combined irrigation and fertilizer, which has outstanding advantages of saving fertilizer, saving water, saving labor, protecting environment, high yield and high efficiency. Currently, most of the water and fertilizer integrated irrigation and fertilization and irrigation operation in the production-based greenhouse is achieved relying on artificial experience, which is hard to achieve timely, scientific and intelligent irrigation. In this study, the application of STM32 embedded system realized the real-time collection of the data from the humidity sensors buried in top, middle and low depth of soil, and water and fertilizer integrated irrigation work was completed in the greenhouse through automatic control according to the predetermined fertilization and irrigation strategies for different crops. Moreover, the system had remote monitoring function, which used the global system for mobile (GSM) module to provide users with remote short message services, and therefore, the users could not only achieve the remote intelligent monitoring on the irrigation, light, ventilation of the greenhouse through short messages, but also could start and stop the remote control system operation, so as to realize the automatic management of the greenhouse environment, achieving the purpose of remote fertilization and water-saving irrigation.展开更多
The research on water masses is always one important facet of Oceanography. I adopt the method of Fuzzy Density Clustering to analyse water masses. Meanwhile, I use Visual Basic 6.0 as developing platform and utilize ...The research on water masses is always one important facet of Oceanography. I adopt the method of Fuzzy Density Clustering to analyse water masses. Meanwhile, I use Visual Basic 6.0 as developing platform and utilize the MapX components to develop the platform of GIS. By integrating the Water Masses Model compiled by FORTRAN language, and GIS using Tight Coupling, I develop an Integrated System. That makes all phases are finished in one condition, including the gain of computing grid, the pick-up and analysis of data, the choice of parameters and resetting, the computing of model, and the result's visualization. It improves the efficiency of the data analysis and decision-making Finally, this system is applied in the Zhoushan fishing ground and adjacent region. The results are satisfying.展开更多
The health conditions of Liao River were assessed using 25 sampling sites in April 2005, with water quality index, biotic index and physical habitat quality index. Based on the method of cluster analysis (CA) for wa...The health conditions of Liao River were assessed using 25 sampling sites in April 2005, with water quality index, biotic index and physical habitat quality index. Based on the method of cluster analysis (CA) for water quality indices, it revealed that heavily polluted sites of Liao River are located at estuary and mainstream. The aquatic species surveyed were attached algae and benthic invertebrates. The result showed that the diversity and biomass of attached algae and benthic index of biotic integrity (B-IBI) were degrading as the chemical and physical quality of water bodies deteriorating. Physiochemical parameters, BODs, CODcr, TN, TP, NH3-N, DO, petroleum hydrocarbon and conductivity, were statistically analyzed with principal component analysis and correlation analysis. The statistical results were incorporated into the integrated assessing water quality index, combining fecal coliform count, attached algae diversity, B-IBI and physical habitat quality score. A comprehensive integrated assessing system of fiver ecological health was established. Based on the systimetic assessment, the assessed sites are categorized into 9 "healthy" and "sub-healthy" sites and 8 "sub-sick" and "sick" sites.展开更多
The water Cherenkov detector array(WCDA) is an important part of the large high-altitude air shower observatory(LHAASO),which is in a research and development phase.The central scientific goal of LHAASO is to explore ...The water Cherenkov detector array(WCDA) is an important part of the large high-altitude air shower observatory(LHAASO),which is in a research and development phase.The central scientific goal of LHAASO is to explore the origin of high-energy cosmic rays of the universe and to push forward the frontier of new physics.To simplify the WCDA's readout electronics,a prototype of a front-end readout for an application-specific integrated circuit(ASIC) is designed based on the timeover-threshold method to achieve charge-to-time conversion.High-precision time measurement and charge measurement are necessary over a full dynamic range[1-4000photoelectrons(P.E.)].To evaluate the performance of this ASIC,a test system is designed that includes the front-end ASIC test module,digitization module,and test software.The first module needs to be customized for different ASIC versions,whereas the digitization module and test software are tested for general-purpose use.In the digitization module,a field programmable gate array-based time-todigital converter is designed with a bin size of 333 ps,which also integrates an inter-integrated circuit to configure the ASIC test module,and a universal serial bus interface is designed to transfer data to the remote computer.Test results indicate that the time resolution is better than 0.5 ns,and the charge resolution is better than 30%root mean square(RMS) at 1 P.E.and 3%RMS at 4000 P.E.,which are beyond the application requirements.展开更多
The problem of optimal synthesis of an integrated water system is addressed in this study, where water using processes and water treatment operations are combined into a single network such that the total cost of fres...The problem of optimal synthesis of an integrated water system is addressed in this study, where water using processes and water treatment operations are combined into a single network such that the total cost of fresh water and wastewater treatment is globally minimized. A superstructure that incorporates all feasible design alterna- tives for wastewater treatment, reuse and recycle, is synthesized with a non-linear programming model. An evolutionary approach--an improved particle swarm optimization is proposed for optimizing such systems. Two simple examples are .Presented.to illustrate the global op.timization of inte.grated water networks using the proposed algorithm.展开更多
Drinking water is supplied through a centralized water supply system and may not be accessed by communities in rural areas of Malaysia.This study investigated the performance of a low-cost, self-prepared combined acti...Drinking water is supplied through a centralized water supply system and may not be accessed by communities in rural areas of Malaysia.This study investigated the performance of a low-cost, self-prepared combined activated carbon and sand filtration(CACSF) system for roofharvested rainwater and lake water for potable use. Activated carbon was self-prepared using locally sourced coconut shell and was activated using commonly available salt rather than a high-tech procedure that requires a chemical reagent. The filtration chamber was comprised of local,readily available sand. The experiments were conducted with varying antecedent dry intervals(ADIs) of up to 15 d and lake water with varying initial chemical oxygen demand(COD) concentration. The CACSF system managed to produce effluents complying with the drinking water standards for the parameters p H, dissolved oxygen(DO), biochemical oxygen demand(BOD5), COD, total suspended solids(TSS), and ammonia nitrogen(NH_3-N). The CACSF system successfully decreased the population of Escherichia coli(E. coli) in the influents to less than 30 CFU/m L. Samples with a higher population of E. coli(that is, greater than 30 CFU/m L) did not show 100% removal. The system also showed high potential as an alternative for treated drinking water for roof-harvested rainwater and class II lake water.展开更多
River Nile is one of the longest transboundery rivers and it is shared and used by Burundi,Democratic Republic of Congo,Egypt,Ethiopia,Eritrea,Kenya,Rwanda,Sudan,Tanzania and Uganda.As of today,the Nile is a crucial r...River Nile is one of the longest transboundery rivers and it is shared and used by Burundi,Democratic Republic of Congo,Egypt,Ethiopia,Eritrea,Kenya,Rwanda,Sudan,Tanzania and Uganda.As of today,the Nile is a crucial resource for the economic development of the Nile Basin countries and a vital source of livelihood for 160 million inhabitants as well as 300 million people living in the 10 riparian countries.The Nile Basin Initiative(NBI) is one of the international cooperative river basin management program and regional partnership where all the Nile Basin countries except Eritrea unite to pursue long-term sustainable development,improved land use practices and management.This review therefore focused on the challenges not faced on NBI in terms of integrated use of the river and conducted analysis of strengths,weaknesses,opportunities and threats(SWOT) based on secondary data.The result of the review revealed that for decades,the Nile Basin people have been facing many complex environmental,social,economic and political challenges that have made it difficult for the proper management and sustainability of Nile water.The initiative provides training to develop skills in government ministries,non-governmental organizations and local communities in each country.It is also working to raise awareness of critical environmental issues by strengthening networks of environmental education practitioners;developing curriculum in the education sector.The challenges of NBI include the involvement and funding of World Bank,lack of sufficient staff,procedural and policies conflicts,lack of coordination and linkage with other regional institutions and lack of recognition as river basin organization.Considering the complex nature of the project,it is recommended that the NBI should come up with a strong multi-disciplinary monitoring and evaluation team to follow up all implemented projects.The NBI should carry out participatory land use planning in communities along the river basin.Moreover,livelihood analysis should be carried out especially in communities along the Nile to come up with poverty eradication projects which are socially acceptable,applicable,economically viable and affordable.展开更多
Integration of water, fertilizer and pesticide is the final stage of agricultural development, which improves the utilization efficiency of water, fertilizer and pesticide. Starting from the design and realization of ...Integration of water, fertilizer and pesticide is the final stage of agricultural development, which improves the utilization efficiency of water, fertilizer and pesticide. Starting from the design and realization of water, fertilizer and pesticide integrated automatic control device, the paper discusses selection and application of fertilizer pesticides, use procedure, water, fertilizer and pesticide saving effect and receptive crowd in the application process of modern planting industry, so as to provide the basis for promotion and popularization of water, fertilizer and pesticide integration.展开更多
Developing effective and practical electrocatalyst under industrial electrolysis conditions is critical for renewable hydrogen production.Herein,we report the self-supporting NiFe LDH-MoS_(x) integrated electrode for ...Developing effective and practical electrocatalyst under industrial electrolysis conditions is critical for renewable hydrogen production.Herein,we report the self-supporting NiFe LDH-MoS_(x) integrated electrode for water oxidation under normal alkaline test condition(1 M KOH at 25℃)and simulated industrial electrolysis conditions(5 M KOH at 65℃).Such optimized electrode exhibits excellent oxygen evolution reaction(OER)performance with overpotential of 195 and 290 mV at current density of 100 and 400 mA·cm^(-2) under normal alkaline test condition.Notably,only over-potential of 156 and 201 mV were required to achieve the current density of 100 and 400mA·cm^(-2) under simulated industrial electrolysis conditions.No significant degradations were observed after long-term durability tests for both conditions.When using in two-electrode system,the operational voltages of 1.44 and 1.72 V were required to achieve a current density of 10 and 100 mA·cm^(-2) for the overall water splitting test(NiFe LDH-MoS_(x)/INF||20%Pt/C).Additionally,the operational voltage of employing NiFe LDH-MoS_(x)/INF as both cathode and anode merely require 1.52 V at 50mA·cm^(-2) at simulated industrial electrolysis conditions.Notably,a membrane electrode assembly(MEA)for anion exchange membrane water electrolysis(AEMWEs)using NiFe LDH-MoS_(x)/INF as an anode catalyst exhibited an energy conversion efficiency of 71.8%at current density of 400 mA·cm^(-2)in 1 M KOH at 60℃.Further experimental results reveal that sulfurized substrate not only improved the conductivity of NiFe LDH,but also regulated its electronic configurations and atomic composition,leading to the excellent activity.The easy-obtained and cost-effective integrated electrodes are expected to meet the large-scale application of industrial water electrolysis.展开更多
To achieve the purpose of reducing farm non-point source pollution, we integrated site specific nitrogen management precise irrigation, controlled drainage, and wetland eco-repair system in dike area of Taihu basin. D...To achieve the purpose of reducing farm non-point source pollution, we integrated site specific nitrogen management precise irrigation, controlled drainage, and wetland eco-repair system in dike area of Taihu basin. During investigation, it had given prominence for the water and fertilizer coupling effects of precise irrigation and site specific nutrient management, the characteristics of integration on controlled irrigation, controlled drainage and wetland ecosystem non-point source pollution control. Then the water and fertilizer integrated management mode of paddy field was put forward in Taihu basin where the water production efficiency increased to 1.64 kg. m-3, water saved 37.8%, fertilizer use efficiency raised 15,4%, yield raised 10%, and N, P load decreased 26%-72%. The modern agricultural and farmland ecosystems that control and cut down the farm non-point source pollution came into being, which can be a reference by Taihu basin to control its agricultural non-point source pollution and eutrophicated water body.展开更多
Taking Hongyan strawberry as the material and PE drip irrigation tape and fertilizer applicator as the tool of integrated application of water and fertilizer,this experiment studied the effects of six fertilizers incl...Taking Hongyan strawberry as the material and PE drip irrigation tape and fertilizer applicator as the tool of integrated application of water and fertilizer,this experiment studied the effects of six fertilizers including Batian,Jiashili,Wangdefeng,Stanley,volfertile and calcium protein on yield and quality of strawberry. The experimental results showed that different water-soluble fertilizers had different effects on the main economic traits of strawberry. For the maximum single fruit mass,the highest was volfertile treatment( 28. 72 g),followed by calcium protein treatment,and the lowest was Stanley treatment( 23. 89 g). The fruit treated with Batian,volfertile and calcium protein was hard in the texture,the fruit treated with Wangdefeng was harder,that of Stanley was softer,and that of Jiashili was soft. The strawberry fruit treated with Wangdefeng and calcium protein was sweet,the fruit treated with volfertile and Batian was sweet,that treated with Jiashili was sour and sweet,and that treated with Stanley was slightly sour. The fruit treated with calcium protein,volfertile and Batian showed strong storage resistance.Strawberry plants treated with Batian,Wangdefeng,Stanley,and calcium protein showed stronger growth,and strawberry plants showed a semi-opening pattern. The yield of strawberry treated with volfertile was highest( 17 400 kg/ha),which was significantly increased compared with other treatments,followed by that treated by Stanley( 13 140 kg/ha).展开更多
Efficient,stable,and noble‐metal‐free electrocatalysts for both the oxygen evolution reaction and the hydrogen evolution reaction are highly imperative for the realization of low‐cost commercial water‐splitting el...Efficient,stable,and noble‐metal‐free electrocatalysts for both the oxygen evolution reaction and the hydrogen evolution reaction are highly imperative for the realization of low‐cost commercial water‐splitting electrolyzers.Herein,a cost‐effective and ecofriendly strategy is reported to fabricate coral‐like FeNi(OH)x/Ni as a bifunctional electrocatalyst for overall water splitting in alkaline media.With the assistance of mild corrosion of Ni by Fe(NO3)3,in situ generated FeNi(OH)x nanosheets are intimately attached on metallic coral‐like Ni.Integration of these nanosheets with the electrodeposited coral‐like Ni skeleton and the supermacroporous Ni foam substrate forms a binder‐free hierarchical electrode,which is beneficial for exposing catalytic active sites,accelerating mass transport,and facilitating the release of gaseous species.In 1.0 mol L^-1 KOH solution,a symmetric electrolyzer constructed with FeNi(OH)x/Ni as both the anode and the cathode exhibits an excellent activity with an applied potential difference of 1.52 V at 10 mA cm^-2,which is superior to that of an asymmetric electrolyzer constructed with the state‐of‐the‐art RuO2‐PtC couple(applied potential difference of 1.55 V at 10 mA cm^-2).This work contributes a facile and reliable strategy for manufacturing affordable,practical,and promising water‐splitting devices.展开更多
Global Positioning System(GPS)measurements of integrated water vapor(IWV)for two years(2014 and 2015)are presented in this paper.Variation of IWV during active and break spells of Indian summer monsoon has been studie...Global Positioning System(GPS)measurements of integrated water vapor(IWV)for two years(2014 and 2015)are presented in this paper.Variation of IWV during active and break spells of Indian summer monsoon has been studied for a tropical station Hyderabad(17.4°N,78.46°E).The data is validated with ECMWF Re-Analysis(ERA)91 level data.Relationships of IWV with other atmospheric variables like surface temperature,rain,and precipitation efficiency have been established through cross-correlation studies.A positive correlation coefficient is observed between IWV and surface temperature over two years.But the coefficient becomes negative when only summer monsoon months(June,July,August,and September)are considered.Rainfall during these months cools down the surface and could be the reason for this change in the correlation coefficient.Correlation studies between IWV-precipitation,IWVprecipitation efficiency(P.E),and precipitation-P.E show that coefficients are-0.05,-0.10 and 0.983 with 95%confidence level respectively,which proves that the efficacy of rain does not depend only on the level of water vapor.A proper dynamic mechanism is necessary to convert water vapor into the rain.The diurnal variations of IWV during active and break spells have been analyzed.The amplitudes of diurnal oscillation and its harmonics of individual spell do not show clear trends but the mean amplitudes of the break spells are approximately double than those of the active spells.The amplitudes of diurnal,semidiurnal and ter-diurnal components during break spells are 1.08 kg/m^(2),0.52 kg/m;and 0.34 kg/m;respectively.The corresponding amplitudes during active spells are 0.68 kg/m^(2),0.41 kg/m;and 0.23 kg/m;.展开更多
基金support of the National Key R&D Program of China(2023YFD2301500)the China Agriculture System of MOF and MARA(CARS-02)the Shandong Central Guiding the Local Science and Technology Development,China(YDZX20203700002548)。
文摘The footprints of water and nitrogen(WF and NF)provide a comprehensive overview of the type and quantity of water consumption and reactive nitrogen(Nr)loss in crop production.In this study,a field experiment over two years(2019 and 2020)compared three integrated agronomic practice management(IAPM)systems:An improved management system(T2),a high-yield production system(T3),and an integrated soil-crop management system(ISCM)using a local smallholder farmer’s practice system(T1)as control,to investigate the responses of WF,Nr losses,water use efficiency(WUE),and nitrogen use efficiency(NUE)to IAPM.The results showed that IAPM optimized water distribution and promoted water use by summer maize.The evapotranspiration over the whole maize growth period of IAPM increased,but yield increased more,leading to a significant increase in WUE.The WUE of the T2,T3,and ISCM treatments was significantly greater than in the T1 treatment,in 2019 and 2020respectively,by 19.8-21.5,31.8-40.6,and 34.4-44.6%.The lowest WF was found in the ISCM treatment,which was 31.0%lower than that of the T1 treatment.In addition,the ISCM treatment optimized soil total nitrogen(TN)distribution and significantly increased TN in the cultivated layer.Excessive nitrogen fertilizer was applied in treatment T3,producing the highest maize yield,and resulting in the highest Nr losses.In contrast,the ISCM treatment used a reduced nitrogen fertilizer rate,sacrificing grain yield partly,which reduced Nr losses and eventually led to a significant increase in nitrogen use efficiency and nitrogen recovery.The Nr level in the ISCM treatment was34.8%lower than in the T1 treatment while NUE was significantly higher than in the T1 treatment by 56.8-63.1%in2019 and 2020,respectively.Considering yield,WUE,NUE,WF,and NF together,ISCM should be used as a more sustainable and clean system for sustainable production of summer maize.
基金Financial supports from Science Foundation of China University of PetroleumBeijing (No. 2462018BJC004)。
文摘Inter-plant heat integration is an effective way for energy recovery in process industry. Although inter-plant heat integration can significantly reduce energy consumption, it is not widely applied in the multiple stakeholders’ situation due to profit or cost distribution problems. Therefore, this work considers both the technique aspects of heat integration and its business aspects between stakeholders simultaneously. The new proposed methodology consists of three steps. Firstly the optimal matching of heat integration between plants is obtained through mathematical programming. Then the cost distribution is decided through game theory. Finally the cost distribution obtained previous is corrected by an ideal expert model. A case study is used to illustrate the effectiveness of the method in the end of the work.
基金Supported by Scientific Research Development Fund of Hefei University of Technology (2009HGXJ0174)~~
文摘Taking the planning and major architectural design projects of Anqing Children Welfare Home for example,through the research on categories and each component of solar water heating system,the paper discussed strategies and methods to realize solar energy and architectural integration design in the climate condition and location environment of Anhui Province.
文摘The green high-yield and high-efficiency cultivation techniques of integrated management of water and fertilizer for maize under mulch drip irrigation are described from the aspects of high yield target of maize and its component factor indexes,pre-sowing preparation,sowing,post-sowing management,field management at the seedling stage,integrated management of water and fertilizer for target yield of maize,rational application of micro-fertilizer,comprehensive prevention and control of diseases and pests,timely harvest,etc.,in order to provide a reference for agricultural technicians,maize farmers and maize industry development in northern Xinjiang.
文摘This review provides an insight and up-to-date information on the application of Moringa oleifera seeds, the short falls of existing technologies as a coagulant and disinfectant in domestic water treatment. While the coagulant properties are well reported, the disinfectant properties are not well studied. Literatures on low cost alternative technologies such as the application of hiocoagulants and slow sand filters are extensively reported. However, there is limited work addressing the limitations of these technologies that have restricted its widespread use to solve the global soaring water crises. Slow sand filters have a very slow filtration rate that depends on the biofilm layer which takes about 17 days to form. Moringa oleifera treated water cannot last more than 48 hours without bacteria regrowth. Investigation of the best method of isolating coagulant component continues with differing opinions over the nature of its coagulant ingredient not resolved in ongoing literature. An attempt was made in this paper to highlight the advantages of a Moringa disinfectant sand filter hybrid system that can purify water. Microbiological advantages of this system in providing a 100% removal of pathogens, and engineering considerations such as water treatment within an hour residence time, faster flow rates, less clogging and backwashing could be some of the advantages ofa Moringa sand filter system. The need to focus on integrating Moringa and sand filter systems for more practical applications is recommended.
文摘It is complicated to model the acoustic field in stratified ocean for airborne aircraft,due to high speed of the source and air-to-water sound transmission.To our knowledge,there are very few papers in the open literature dealing with this complicated problem;but,in our opinion,they all require great amount of computation.We now propose a different method that requires much less computation.We improve the wavenumber integration method to model the received temporal signal for a moving source in stratified ocean and sum up in a concise form the core of our paper as follows:(A) Eq.(11) can be calculated by means of fast Chirp Z transform and the signals at all N time points are generated simultaneously;(B) direct numerical evaluation of the wavenumber integral in Eq.(4) produces large numerical errors;so it is necessary to shift the integration slightly below the real axis;(C) we compare the computation cost of direct calculation method with that of our fast calculation method;from the results presented in table 1,we can see that the fast calculation method consumes much less computation time,particularly for long duration signals;(D) for an airborne rapidly moving source,we compute the Doppler-shifted signals in shallow water and analyze their short-time Fourier transform;from Fig.1b,we can see that the received signals have multiple frequency components for a tonal source due to source motion and that each component corresponds to an arrival path.
文摘The present study concerns the revalorization of drained water from aquaculture ponds rearing Clarias gariepinus on okra crops. The rearing was carried out at the farm of Gaston Berger University in 100 m2 ponds. In each pond, the individuals of C. garipinus with an average weight of 6 ± 0.3 g were stocked at a density of 11 per m2. The water temperature and pH were measured during the experiment. The control fishing is carried out every month to monitor variations in the weight and size of reared individuals. The plant production is carried out in elementary plots measuring 3 m × 1.5 m. Each plot was fertilized with either: drained water from C. gariepinus rearing (DWC), poultry droppings (PD), cow dung (CD) and mineral fertilizer (NPK). Treatments are carried out in tripliqua with either river water (RW), RW + the recommended dose of NPK (RD-NPK), RW + RD-PD, RW + RD-CD, DWC, DWC + 25% RD-NPK, DWC + 50% RD-NPK, DWC + 75% RD-NPK, DWC + 25% RD-PD, DWC + 50% RD-PD, DWC + 75% RD-PD, DWC + 25% RD-CD, DWC + 50% RD-CD, DWC + 75% RD-CD. Growth parameters and yield of okra were determined. The average temperature in the rearing environment was 27.6 ± 1.5˚C and pH 7.9 ± 1.1. After six (06) months of rearing, C. gariepinus individuals reached an average weight of 850.12 ± 1.3 g and an average height of 52.44 ± 1.1 cm. The daily weight gain and specific growth rates over this period were 3.9 g per day and 2.8% per day, respectively. The treatment T1 (RW + DR-NPK) gave the highest mean collar diameter and mean plant height with 2.3 ± 0.9 cm and 61.6 ± 32 cm, respectively. In T4 (DWC), the mean height of plants was 38.8 ± 23.5 cm and mean collar diameter 1.4 ± 0.8 cm. The growth performance in T4 was comparable to that of RD-CD (T3), but different from RD-NPK (T1) and RD-PD (T2). The highest average number, average weight, average length and average diameter of fruits were noted in treatments T13 (RW + RD-75%CD) and T7 (DWC + 75% RD-NPK). The best yields were noted in T1 (RW + RD-NPK) = 10.8 ± 5.4 t·ha−1, T5 (DWC + 25% RD-NPK) = 9.2 ± 4.6 t·ha−1 and T4 (DWC) = 8.6 ± 4.3 t·ha−1 which are comparable and higher than those obtained in T2 = 5.7 ± 2.8 t·ha−1 and T3 = 7.5 ± 3.8 t·ha−1.
基金Supported by the Scientific Research Plan of the Education Department of Jilin Province(2014322)~~
文摘The integration of water and fertilizer is a comprehensive technology combined irrigation and fertilizer, which has outstanding advantages of saving fertilizer, saving water, saving labor, protecting environment, high yield and high efficiency. Currently, most of the water and fertilizer integrated irrigation and fertilization and irrigation operation in the production-based greenhouse is achieved relying on artificial experience, which is hard to achieve timely, scientific and intelligent irrigation. In this study, the application of STM32 embedded system realized the real-time collection of the data from the humidity sensors buried in top, middle and low depth of soil, and water and fertilizer integrated irrigation work was completed in the greenhouse through automatic control according to the predetermined fertilization and irrigation strategies for different crops. Moreover, the system had remote monitoring function, which used the global system for mobile (GSM) module to provide users with remote short message services, and therefore, the users could not only achieve the remote intelligent monitoring on the irrigation, light, ventilation of the greenhouse through short messages, but also could start and stop the remote control system operation, so as to realize the automatic management of the greenhouse environment, achieving the purpose of remote fertilization and water-saving irrigation.
文摘The research on water masses is always one important facet of Oceanography. I adopt the method of Fuzzy Density Clustering to analyse water masses. Meanwhile, I use Visual Basic 6.0 as developing platform and utilize the MapX components to develop the platform of GIS. By integrating the Water Masses Model compiled by FORTRAN language, and GIS using Tight Coupling, I develop an Integrated System. That makes all phases are finished in one condition, including the gain of computing grid, the pick-up and analysis of data, the choice of parameters and resetting, the computing of model, and the result's visualization. It improves the efficiency of the data analysis and decision-making Finally, this system is applied in the Zhoushan fishing ground and adjacent region. The results are satisfying.
基金supported by the Project of Chinese National Special Science and Technology Programme of Water Pollution Control and Treatment "Techniqueof Watershed Aquatic Ecological Function Zoning and Quality Target Management" (No. 2008ZX07526)the Special Project of Central Publicinterest Scientific Institution Basal Research "Estimation of Margin of Safety(MOS) of TMDL Based on Uncertainty Analysis" (No.2007KYYW32)
文摘The health conditions of Liao River were assessed using 25 sampling sites in April 2005, with water quality index, biotic index and physical habitat quality index. Based on the method of cluster analysis (CA) for water quality indices, it revealed that heavily polluted sites of Liao River are located at estuary and mainstream. The aquatic species surveyed were attached algae and benthic invertebrates. The result showed that the diversity and biomass of attached algae and benthic index of biotic integrity (B-IBI) were degrading as the chemical and physical quality of water bodies deteriorating. Physiochemical parameters, BODs, CODcr, TN, TP, NH3-N, DO, petroleum hydrocarbon and conductivity, were statistically analyzed with principal component analysis and correlation analysis. The statistical results were incorporated into the integrated assessing water quality index, combining fecal coliform count, attached algae diversity, B-IBI and physical habitat quality score. A comprehensive integrated assessing system of fiver ecological health was established. Based on the systimetic assessment, the assessed sites are categorized into 9 "healthy" and "sub-healthy" sites and 8 "sub-sick" and "sick" sites.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(KJCX2-YW-N27)the CAS Center for Excellence in Particle Physics(CCEPP)
文摘The water Cherenkov detector array(WCDA) is an important part of the large high-altitude air shower observatory(LHAASO),which is in a research and development phase.The central scientific goal of LHAASO is to explore the origin of high-energy cosmic rays of the universe and to push forward the frontier of new physics.To simplify the WCDA's readout electronics,a prototype of a front-end readout for an application-specific integrated circuit(ASIC) is designed based on the timeover-threshold method to achieve charge-to-time conversion.High-precision time measurement and charge measurement are necessary over a full dynamic range[1-4000photoelectrons(P.E.)].To evaluate the performance of this ASIC,a test system is designed that includes the front-end ASIC test module,digitization module,and test software.The first module needs to be customized for different ASIC versions,whereas the digitization module and test software are tested for general-purpose use.In the digitization module,a field programmable gate array-based time-todigital converter is designed with a bin size of 333 ps,which also integrates an inter-integrated circuit to configure the ASIC test module,and a universal serial bus interface is designed to transfer data to the remote computer.Test results indicate that the time resolution is better than 0.5 ns,and the charge resolution is better than 30%root mean square(RMS) at 1 P.E.and 3%RMS at 4000 P.E.,which are beyond the application requirements.
基金Supported by Tianjin Municipal Science Foundation (No. 07JCZDJC 02500)
文摘The problem of optimal synthesis of an integrated water system is addressed in this study, where water using processes and water treatment operations are combined into a single network such that the total cost of fresh water and wastewater treatment is globally minimized. A superstructure that incorporates all feasible design alterna- tives for wastewater treatment, reuse and recycle, is synthesized with a non-linear programming model. An evolutionary approach--an improved particle swarm optimization is proposed for optimizing such systems. Two simple examples are .Presented.to illustrate the global op.timization of inte.grated water networks using the proposed algorithm.
基金supported by the Universiti Kebangsaan Malaysia Grant(Grant No.GUP-2014-077)
文摘Drinking water is supplied through a centralized water supply system and may not be accessed by communities in rural areas of Malaysia.This study investigated the performance of a low-cost, self-prepared combined activated carbon and sand filtration(CACSF) system for roofharvested rainwater and lake water for potable use. Activated carbon was self-prepared using locally sourced coconut shell and was activated using commonly available salt rather than a high-tech procedure that requires a chemical reagent. The filtration chamber was comprised of local,readily available sand. The experiments were conducted with varying antecedent dry intervals(ADIs) of up to 15 d and lake water with varying initial chemical oxygen demand(COD) concentration. The CACSF system managed to produce effluents complying with the drinking water standards for the parameters p H, dissolved oxygen(DO), biochemical oxygen demand(BOD5), COD, total suspended solids(TSS), and ammonia nitrogen(NH_3-N). The CACSF system successfully decreased the population of Escherichia coli(E. coli) in the influents to less than 30 CFU/m L. Samples with a higher population of E. coli(that is, greater than 30 CFU/m L) did not show 100% removal. The system also showed high potential as an alternative for treated drinking water for roof-harvested rainwater and class II lake water.
文摘River Nile is one of the longest transboundery rivers and it is shared and used by Burundi,Democratic Republic of Congo,Egypt,Ethiopia,Eritrea,Kenya,Rwanda,Sudan,Tanzania and Uganda.As of today,the Nile is a crucial resource for the economic development of the Nile Basin countries and a vital source of livelihood for 160 million inhabitants as well as 300 million people living in the 10 riparian countries.The Nile Basin Initiative(NBI) is one of the international cooperative river basin management program and regional partnership where all the Nile Basin countries except Eritrea unite to pursue long-term sustainable development,improved land use practices and management.This review therefore focused on the challenges not faced on NBI in terms of integrated use of the river and conducted analysis of strengths,weaknesses,opportunities and threats(SWOT) based on secondary data.The result of the review revealed that for decades,the Nile Basin people have been facing many complex environmental,social,economic and political challenges that have made it difficult for the proper management and sustainability of Nile water.The initiative provides training to develop skills in government ministries,non-governmental organizations and local communities in each country.It is also working to raise awareness of critical environmental issues by strengthening networks of environmental education practitioners;developing curriculum in the education sector.The challenges of NBI include the involvement and funding of World Bank,lack of sufficient staff,procedural and policies conflicts,lack of coordination and linkage with other regional institutions and lack of recognition as river basin organization.Considering the complex nature of the project,it is recommended that the NBI should come up with a strong multi-disciplinary monitoring and evaluation team to follow up all implemented projects.The NBI should carry out participatory land use planning in communities along the river basin.Moreover,livelihood analysis should be carried out especially in communities along the Nile to come up with poverty eradication projects which are socially acceptable,applicable,economically viable and affordable.
基金Supported by Science and Technology Program of Guangxi Province(GK AD19245169,GK AD18281072,GK AA17202037,GK AB16380164)。
文摘Integration of water, fertilizer and pesticide is the final stage of agricultural development, which improves the utilization efficiency of water, fertilizer and pesticide. Starting from the design and realization of water, fertilizer and pesticide integrated automatic control device, the paper discusses selection and application of fertilizer pesticides, use procedure, water, fertilizer and pesticide saving effect and receptive crowd in the application process of modern planting industry, so as to provide the basis for promotion and popularization of water, fertilizer and pesticide integration.
文摘Developing effective and practical electrocatalyst under industrial electrolysis conditions is critical for renewable hydrogen production.Herein,we report the self-supporting NiFe LDH-MoS_(x) integrated electrode for water oxidation under normal alkaline test condition(1 M KOH at 25℃)and simulated industrial electrolysis conditions(5 M KOH at 65℃).Such optimized electrode exhibits excellent oxygen evolution reaction(OER)performance with overpotential of 195 and 290 mV at current density of 100 and 400 mA·cm^(-2) under normal alkaline test condition.Notably,only over-potential of 156 and 201 mV were required to achieve the current density of 100 and 400mA·cm^(-2) under simulated industrial electrolysis conditions.No significant degradations were observed after long-term durability tests for both conditions.When using in two-electrode system,the operational voltages of 1.44 and 1.72 V were required to achieve a current density of 10 and 100 mA·cm^(-2) for the overall water splitting test(NiFe LDH-MoS_(x)/INF||20%Pt/C).Additionally,the operational voltage of employing NiFe LDH-MoS_(x)/INF as both cathode and anode merely require 1.52 V at 50mA·cm^(-2) at simulated industrial electrolysis conditions.Notably,a membrane electrode assembly(MEA)for anion exchange membrane water electrolysis(AEMWEs)using NiFe LDH-MoS_(x)/INF as an anode catalyst exhibited an energy conversion efficiency of 71.8%at current density of 400 mA·cm^(-2)in 1 M KOH at 60℃.Further experimental results reveal that sulfurized substrate not only improved the conductivity of NiFe LDH,but also regulated its electronic configurations and atomic composition,leading to the excellent activity.The easy-obtained and cost-effective integrated electrodes are expected to meet the large-scale application of industrial water electrolysis.
基金Supported by NSFC (50839002)Society Development Program of Jiangsu Province (BS2007139)
文摘To achieve the purpose of reducing farm non-point source pollution, we integrated site specific nitrogen management precise irrigation, controlled drainage, and wetland eco-repair system in dike area of Taihu basin. During investigation, it had given prominence for the water and fertilizer coupling effects of precise irrigation and site specific nutrient management, the characteristics of integration on controlled irrigation, controlled drainage and wetland ecosystem non-point source pollution control. Then the water and fertilizer integrated management mode of paddy field was put forward in Taihu basin where the water production efficiency increased to 1.64 kg. m-3, water saved 37.8%, fertilizer use efficiency raised 15,4%, yield raised 10%, and N, P load decreased 26%-72%. The modern agricultural and farmland ecosystems that control and cut down the farm non-point source pollution came into being, which can be a reference by Taihu basin to control its agricultural non-point source pollution and eutrophicated water body.
基金Supported by Project for Experimental Demonstration of New Agricultural Technology of Ministry of Agriculture and Rural Affairs(Integrated Application of Water and Fertilizer for Drip Irrigation under Ground Membrane)Project for Provincial-level Farmland Quality Improvement and Fertilizer Reduction and Efficiency Increase
文摘Taking Hongyan strawberry as the material and PE drip irrigation tape and fertilizer applicator as the tool of integrated application of water and fertilizer,this experiment studied the effects of six fertilizers including Batian,Jiashili,Wangdefeng,Stanley,volfertile and calcium protein on yield and quality of strawberry. The experimental results showed that different water-soluble fertilizers had different effects on the main economic traits of strawberry. For the maximum single fruit mass,the highest was volfertile treatment( 28. 72 g),followed by calcium protein treatment,and the lowest was Stanley treatment( 23. 89 g). The fruit treated with Batian,volfertile and calcium protein was hard in the texture,the fruit treated with Wangdefeng was harder,that of Stanley was softer,and that of Jiashili was soft. The strawberry fruit treated with Wangdefeng and calcium protein was sweet,the fruit treated with volfertile and Batian was sweet,that treated with Jiashili was sour and sweet,and that treated with Stanley was slightly sour. The fruit treated with calcium protein,volfertile and Batian showed strong storage resistance.Strawberry plants treated with Batian,Wangdefeng,Stanley,and calcium protein showed stronger growth,and strawberry plants showed a semi-opening pattern. The yield of strawberry treated with volfertile was highest( 17 400 kg/ha),which was significantly increased compared with other treatments,followed by that treated by Stanley( 13 140 kg/ha).
文摘Efficient,stable,and noble‐metal‐free electrocatalysts for both the oxygen evolution reaction and the hydrogen evolution reaction are highly imperative for the realization of low‐cost commercial water‐splitting electrolyzers.Herein,a cost‐effective and ecofriendly strategy is reported to fabricate coral‐like FeNi(OH)x/Ni as a bifunctional electrocatalyst for overall water splitting in alkaline media.With the assistance of mild corrosion of Ni by Fe(NO3)3,in situ generated FeNi(OH)x nanosheets are intimately attached on metallic coral‐like Ni.Integration of these nanosheets with the electrodeposited coral‐like Ni skeleton and the supermacroporous Ni foam substrate forms a binder‐free hierarchical electrode,which is beneficial for exposing catalytic active sites,accelerating mass transport,and facilitating the release of gaseous species.In 1.0 mol L^-1 KOH solution,a symmetric electrolyzer constructed with FeNi(OH)x/Ni as both the anode and the cathode exhibits an excellent activity with an applied potential difference of 1.52 V at 10 mA cm^-2,which is superior to that of an asymmetric electrolyzer constructed with the state‐of‐the‐art RuO2‐PtC couple(applied potential difference of 1.55 V at 10 mA cm^-2).This work contributes a facile and reliable strategy for manufacturing affordable,practical,and promising water‐splitting devices.
基金research fellowship offered by ISRO under RESPOND program[No.ISRO/RES/2/406/16-17]。
文摘Global Positioning System(GPS)measurements of integrated water vapor(IWV)for two years(2014 and 2015)are presented in this paper.Variation of IWV during active and break spells of Indian summer monsoon has been studied for a tropical station Hyderabad(17.4°N,78.46°E).The data is validated with ECMWF Re-Analysis(ERA)91 level data.Relationships of IWV with other atmospheric variables like surface temperature,rain,and precipitation efficiency have been established through cross-correlation studies.A positive correlation coefficient is observed between IWV and surface temperature over two years.But the coefficient becomes negative when only summer monsoon months(June,July,August,and September)are considered.Rainfall during these months cools down the surface and could be the reason for this change in the correlation coefficient.Correlation studies between IWV-precipitation,IWVprecipitation efficiency(P.E),and precipitation-P.E show that coefficients are-0.05,-0.10 and 0.983 with 95%confidence level respectively,which proves that the efficacy of rain does not depend only on the level of water vapor.A proper dynamic mechanism is necessary to convert water vapor into the rain.The diurnal variations of IWV during active and break spells have been analyzed.The amplitudes of diurnal oscillation and its harmonics of individual spell do not show clear trends but the mean amplitudes of the break spells are approximately double than those of the active spells.The amplitudes of diurnal,semidiurnal and ter-diurnal components during break spells are 1.08 kg/m^(2),0.52 kg/m;and 0.34 kg/m;respectively.The corresponding amplitudes during active spells are 0.68 kg/m^(2),0.41 kg/m;and 0.23 kg/m;.