In addition to their value as cereal grains, wheat (Triticum aestivum L.) and triticale (× Triticosecale Wittmack) are important cool-season annual forages and cover crops. Yearling steer (Bos taurus) performance...In addition to their value as cereal grains, wheat (Triticum aestivum L.) and triticale (× Triticosecale Wittmack) are important cool-season annual forages and cover crops. Yearling steer (Bos taurus) performance was compared in the spring following autumn establishment as for age cover crops after soybean [Glycine max (L.) Merr.] grain harvest. Replicated pastures (0.4 ha) were no-till seeded in three consecutive years into soybean stubble in autumn, fertilized, and grazed the following spring near Ithaca, NE, USA. Each pasture (n = 3) was continuously stocked in spring with four yearling steers (380 ± 38 kg) for 17, 32, and 28 d in 2005, 2006, and 2007, respectively. In 2005, average daily gain (ADG) for steers grazing triticale exceeded the ADG for wheat by 0.31 kghd<sup>-1</sup>d<sup>-1</sup>. In 2006, wheat ADG exceeded that for triticale by 0.12 kghd<sup>-1</sup>d<sup>-1</sup>. In 2007, steers grazing wheat lost weight, while steers grazing triticale gained 0.20 kghd<sup>-1</sup>d<sup>-1</sup>. Based on the 3-year average animal gains valued at $1.32 kg<sup>-1</sup>, mean net return ($ ha<sup>-1</sup> yr<sup>-1</sup>) was $62.15 for triticale and $22.55 for wheat. Since these grazed cover crops provide ecosystem services in addition to forage, grazing could be viewed as a mechanism for recovering costs and adds additional value to the system. Based on this 3-year grazing trial, triticale was superior to wheat and likely will provide the most stable beef yearling performance across years with variable weather for the western Cornbelt USA.展开更多
The use of cover crops is a promising strategy for influencing the soil microbial consortium,which is essential for the delivery of multiple soil functions(i.e.,soil multifunctionality).Nonetheless,relatively little i...The use of cover crops is a promising strategy for influencing the soil microbial consortium,which is essential for the delivery of multiple soil functions(i.e.,soil multifunctionality).Nonetheless,relatively little is known about the role of the soil microbial consortium in mediating soil multifunctionality under different cover crop amendments in dryland Ultisols.Here,we assessed the multifunctionality of soils subjected to four cover crop amendments(control,non-amended treatment;RD,radish monoculture;HV,hairy vetch monoculture;and RDHV,radish-hairy vetch mixture),and we investigated the contributions of soil microbial richness,network complexity,and ecological clusters to soil multifunctionality.Our results demonstrated that cover crops whose chemical composition differed from that of the main plant crop promoted higher multifunctionality,and the radish-hairy vetch mixture rendered the highest enhancement.We obtained evidence that changes in soil microbial richness and network complexity triggered by the cover crops were associated with higher soil multifunctionality.Specifically,specialized microbes in a key ecological cluster(ecological cluster 2)of the soil microbial network were particularly important for maintaining soil multifunctionality.Our results highlight the importance of cover crop-induced variations in functionally important taxa for promoting the soil multifunctionality of dryland Ultisols.展开更多
Typical row-crop agricultural practices can potentially be harmful to soil health and future sustainability. The use of cover crops (CC) as a mechanism to improve soil health on a wide scale remains underutilized. Soi...Typical row-crop agricultural practices can potentially be harmful to soil health and future sustainability. The use of cover crops (CC) as a mechanism to improve soil health on a wide scale remains underutilized. Soil health remains a major concern for the sustainability of agricultural productivity, therefore, research into CC implementation as a mean to preserve or improve soil health is warranted. The objective of this study was to evaluate the effects of CC on the soils in the eastern Arkansas portion of the Lower Mississippi River Valley (LMRV) over time for various chemical soil parameters, including pH, soil organic matter (SOM), soil elemental contents (i.e., P, K, Ca, Mg, S, Na, Fe, Mn, Zn, Cu, and B), soil respiration, and a generalized soil health score index. Soil pH decreased over time under both CC and no-cover-crop (NCC) treatments, by −0.3 and −0.2, respectively. Soil OM decreased over time under NCC by −0.1%, but did not differ between CC treatments. Soil N availability decreased over time under NCC (−22.6 kg·ha−1), but did not change over time under CC. Soil respiration decreased over time under both CC and NCC, by −76.1 mg·L−1 and −77.3 mg·L−1, respectively, though there was no effect of CC treatment. The Haney soil health score index decreased under CC (−7.0) and NCC (−6.8) without an effect from CC treatment. Results of the study place emphasis on the temporal nature of soil health as influenced by cover crops and their potential to improve soil health.展开更多
This study was conducted to determine the effect of cover crop inter-row in vineyard on main mono-phenol content of grape berry and wine. Three such cover crops, two perennial legumes (white clover and alfalfa) and ...This study was conducted to determine the effect of cover crop inter-row in vineyard on main mono-phenol content of grape berry and wine. Three such cover crops, two perennial legumes (white clover and alfalfa) and a perennial gramineous grass (tall fescue) were sown in vineyard. The main phenolic compounds of mature grape berry and wines vinified under the same conditions were extracted with ethyl acetate and diethyl ether and analyzed by high- performance liquid chromatography (HPLC) by comparing to soil tillage. A total of ten phenolic compounds were identified and quantified in the different grape berry and wines, including nonflavonoids (hydroxybenzoic and hydroxycinnamic acids) and flavonoids (flavanols and flavonols). The concentration of flavonoid compounds (409.43 to 538.63 mg kg^-1 and 56.16 to 81.30 mg L^-1) was higher than nonflavonoids (76.91 to 98.85 mg kg^-1 and 30.65 to 41.22 mg L^-1) for Cabernet Sauvignon grape and wine under different treatments, respectively. In the flavonoid phenolics, Catechin was the most abundant in the different grapes and wines, accounting for 74.94 to 79.70% and 48.60 to 50.62% of total nonanthocyanin phenolics quantified, respectively. Compared to soil tillage, the sward treatments showed a higher content of main mono-phenol and total nonanthocyanin phenolics in grapes and wines. There were significant differences between two cover crop treatments (tall fescue and white clover) and soil tillage for the content of benzoic acid, salicylic acid, caffeic acid, catechin, and total phenolics in the grape berry (P 〈 0.05 or P〈0.01). The wine from tall fescue cover crop had the highest gallic acid, caffeic acid and catechin. Cover crop system increased the total nonanthocyanin phenolics of grapes and wines in order of the four treatments: tall fescue, white clover, alfalfa, and soil tillage (control). Cover crop in vineyard increased total phenols of grape berry and wine, and thus improved the quality of wine evidently.展开更多
Cover crops are the plants which are grown to improve soil fertility, prevent soil erosion, enrichment and protection of soil, and enhance nutrient and water availability, and quality of soil. Cover crops provide seve...Cover crops are the plants which are grown to improve soil fertility, prevent soil erosion, enrichment and protection of soil, and enhance nutrient and water availability, and quality of soil. Cover crops provide several benefits to soils used for agriculture production. Cover crops are helpful in increasing and sustaining microbial biodiversity in soils. We summarized the effect of several cover crops in soil properties such as soil moisture content, soil microbial activities, soil carbon sequestration, nitrate leaching, soil water, and soil health. Selection of cover crops usually depends on the primary benefits which are provided by cover crops. Other factors may also include weather conditions, time of sowing, either legume or non-legume and timing and method of killing of a cover crop. In recent times, cover crops are also used for mitigating climate change, suppressing weeds in crops and increasing exchangeable nutrients such as Mg2+ and K+. Cover crops are also found to be economical in long-term experiment studies. Although some limitations always come with several benefits. Cover crops have some problems including the method of killing, host for pathogens, regeneration, and not immediate benefits of using them. Despite the few limitations, cover crops improve the overall health of the soil and provide a sustainable environment for the main crops.展开更多
Annual ryegrass(Lolium multiflorum Lam.), a non-leguminous winter cover crop, has been adopted to absorb soil native N to minimize N loss from an intensive double rice cropping system in southern China, but a little...Annual ryegrass(Lolium multiflorum Lam.), a non-leguminous winter cover crop, has been adopted to absorb soil native N to minimize N loss from an intensive double rice cropping system in southern China, but a little is known about its effects on rice grain yield and rice N use efficiency. In this study, effects of ryegrass on double rice yield, N uptake and use efficiency were measured under different fertilizer N rates. A 3-year(2009–2011) field experiment arranged in a split-plot design was undertaken. Main plots were ryegrass(RG) as a winter cover crop and winter fallow(WF) without weed. Subplots were three N treatments for each rice season: 0(N_0), 100(N_(100)) and 200 kg N ha–1(N_(200)). In the 3-year experiment, RG reduced grain yield and plant N uptake for early rice(0.4–1.7 t ha–1 for grain yield and 4.6–20.3 kg ha–1 for N uptake) and double rice(0.6–2.0 t ha–1 for grain yield and 6.3–27.0 kg ha–1 for N uptake) when compared with WF among different N rates. Yield and N uptake decrease due to RG was smaller in N_(100) and N_(200) plots than in N_0 plots. The reduction in early rice grain yield in RG plots was associated with decrease number of panicles. Agronomic N use efficiency and fertilizer N recovery efficiency were higher in RG plots than winter fallow for early rice and double rice among different N rates and experimental years. RG tended to have little effect on grain yield, N uptake, agronomic N use efficiency, and fertilizer N recovery efficiency in the late rice season. These results suggest that ryegrass may reduce grain yield while it improves rice N use efficiency in a double rice cropping system.展开更多
A common crop rotation in the west Iran is wheat-fallow-corn. The fallow period after wheat harvest (during fall and winter) can lead to soil erosion, nutrient losses (e.g. nitrate leaching) and offsite movement of pe...A common crop rotation in the west Iran is wheat-fallow-corn. The fallow period after wheat harvest (during fall and winter) can lead to soil erosion, nutrient losses (e.g. nitrate leaching) and offsite movement of pesticides. This period is an ideal time to establish a cover crop. In order to investigate the effects of different autumn-seeded cover crops on subsequent irrigated corn response to nitrogen fertilizer, field studies were carried out during the 2007-2008 growing season at the Agricultural Research Farm, Razi University, Kermanshah, Iran. The experiment was conducted in a split plot arrangement based on a randomized complete block design with three replications. The main plots consisted of four cover crops including alfalfa (Medicago sativa L.), berseem clover (Trifolium alexandrinum L.), common vetch (Vicia sativa L.) and winter rye (Secale cereale L.) and a control (no cover crop). The sub plots consisted of two fertilizer N rates (0 and 250 kg ha-1). Cover crops were grown for nearly 5 months and then were incorporated into the soil as green manures. The results indicated that corn plant traits including seed yield, the number of seeds per ear and leaf chlorophyll content were significantly influenced by cover crops. Whereas, the cover crops had no signif-icant effects on the number of ears per plant, 100-seed weight and harvest index of corn. Among the cover crop species, common vetch produced higher dry weight and showed the highest positive effects on the corn plant traits. Dry weight produced by this cover crop was 56.41, 120.16 and 124.19% higher than those of winter rye, berseem clover and alfalfa, respectively. Common vetch enhanced seed yield, the number of seeds per ear and leaf chlorophyll content of corn by 46.30, 21.95 and 8.52%, respectively, compared to control. All of the corn traits under study, except the number of ears per plant and harvest index were significantly improved by nitrogen fertilizer. In general, this study revealed that the autumn-seeded cover crops, especially common vetch can be used to improve corn yield. However, the cover crops should be supplemented with nitrogen fertilizer to obtain optimal results.展开更多
Green manure cover crops(GMCCs)planting has a potential for mitigating greenhouse gas emissions(GHG)in agroecosystems and provides important ecosystem services,thereby achieving the Sustainable Development Goals(SDGs)...Green manure cover crops(GMCCs)planting has a potential for mitigating greenhouse gas emissions(GHG)in agroecosystems and provides important ecosystem services,thereby achieving the Sustainable Development Goals(SDGs)stipulated by the United Nations.However,the advantages of cultivating GMCCs on arable land are not widely recognized.For example,in the whole of China,the GMCCs planting area is less than 3.5%of total arable land.The aim of this study is to explore reasons for the low adoption rate of GMCCs planting.Using best–worst scaling(BWS)approach,farmers ranked their preferred conservation practices including three types of GMCC cropping systems.Taking Gansu Province in Northwest China as a case study,a survey with 276 farmers was conducted.The findings indicated that three factors are related to the low adoption rate of GMCCs:1)farmers preferred improving farmland irrigation facilities and substituting chemical fertilizers with organic rather than planting GMCCs;2)lack of awareness and understanding of government policy on GMCCs and limited access to training courses;3)financial support and subsidies from the government are insufficient.This study provides insights and strategic implications for policymakers on how to further promote GMCCs in the future.展开更多
The functional diversity of rhizosphere microflora which is also known as the “microbial community” is a sensitive indicator of soil quality subject to the type of winter cover crop and straw returning.In order to e...The functional diversity of rhizosphere microflora which is also known as the “microbial community” is a sensitive indicator of soil quality subject to the type of winter cover crop and straw returning.In order to evaluate the effects of different winter cover crops and returning patterns on the functional diversity of rhizosphere microflora in double-crop rice paddies,we designed five winter cover crops and straw returning combinations to analyze their effects on the functional diversity of rhizosphere microflora in rice paddies: ryegrass (Lolium multiflorumL.)–double-crop rice (Ry),milk vetch (Astragalus sinicus L.)–double-crop rice (Mv),Rape (Brassica napus L.)–Double-crop rice (Ra), Potato (Solanum tuberosum L.)–double-crop rice (Po),and winter fallow–doublecrop rice (CK,the control).In this paper,the average well color development (AWCD) in Biolog-GN plates indicated the capacity for carbon utilization by the rhizosphere microbial community.We analyzed the rhizosphere microbial community functional diversity of the paddy soils with the above five treatments by using the Biolog-GN system.The results showed that applications of winter cover crop and straw returning caused high increases in AWCD compared with CK,and the AWCD values for samples with Po treatment was greater than those with Ry and CK treatments at the early and late rice maturity stages. It was concluded that applications of winter cover crop and straw returning can cause changes in the carbon utilization efficiency of rhizosphere microflora.There were differences in the genetic diversity of the rhizosphere microflora among different treatments at the maturity stage of early and late rice.The richness,Shannon,and McIntosh Index under different winter cover crop and straw returning treatments were significantly different.The highest indexes were observed in the Po treatment and the lowest in the CK at the maturity stage of early and late rice.The richness, Shannon,and McIntosh Index under different treatments ranked in descending order is as follows: Po>Ra>Mv>Ry>CK.Principal Component Analysis (PCA) of substrate reactions were conducted in this research.The results indicated that the pattern of carbon source utilization varied with winter cover crop treatments,and that carbohydrates and amino acids were the main carbon sources of rhizosphere microorganisms.To conclude,the application of winter cover crop and straw returning to paddy fields could significantly increase the carbon source utilization, species richness,and species evenness of rhizosphere microflora in double-crop rice paddies.展开更多
Soil compaction is a significant problem in the Southeastern USA. This compacted zone or hardpan limits root penetration below this layer and reduces potential yield and makes plants more susceptible to drought induce...Soil compaction is a significant problem in the Southeastern USA. This compacted zone or hardpan limits root penetration below this layer and reduces potential yield and makes plants more susceptible to drought induced stresses. Soil compaction in this region is managed using costly annual deep tillage at or before planting and there is a great interest in reducing and/or eliminating annual tillage operations to lower production costs. Deep rooted cool season cover crops can penetrate this compacted soil zone and create channels, which cash crop roots, such as cotton, could follow to capture moisture and nutrients stored in the subsoil. The cool season cover crop roots would reduce the need for annual deep tillage prior to planting, increases soil organic matter, which provides greater water infiltration and available water holding capacity. Field studies were conducted for two years with three different soil series to determine the effects of tillage systems and cool season cover crops on the soil chemical and physical properties, yield responses, and pest pressure. Results showed that cool season cover crops significantly reduced soil compaction, increased cotton lint yield and soil moisture content, reduced nematode population densities, and increased soil available P, K, Mn, and organic matter content compared to the conventional no-cover crop.展开更多
Grassland, as one of the largest ecosystems on the earth, supports various goods and services to humanity.Historically, humans have increased agricultural output primarily by cropland expansion and agricultural intens...Grassland, as one of the largest ecosystems on the earth, supports various goods and services to humanity.Historically, humans have increased agricultural output primarily by cropland expansion and agricultural intensification.The cropland area was primarily gained at the expense of grassland and forests.Apart from grassland conversion, increasing consumption of calorie- and meat-intensive diets drives the intensification of livestock systems, which is shifting steadily from grazing to feeding with crops.To cope with the environmental degradation due to agriculture, various forms of ‘green payment' were implemented to promote the adoption of sustainable farming practices over the last two decades in the European Union.The aim of this study is to monitor the recent transitions(1992–2010) between grassland and cropland during two Common Agricultural Policy(CAP) reforms at the French mainland scale.We proposed an innovative approach to link grassland conversion to agricultural commodities and farming systems practices.We first assessed the grassland-to-cropland conversion and further investigated the crop sequence patterns that were observed to be dominant after the conversion through mining land-cover survey data Teruti and Teruti-Lucas.We found the trends of the transitions between grassland and cropland over the two time intervals: The loss of grassland(1992–2003) and restoration or re-expansion of grassland(2006–2010) in mainland France.Our finding on the crop sequence patterns after the grassland conversion reveals two notable evolutions of agricultural production systems.These evolutions were related to the increase in the proportion of cropland in the total agricultural land use.One evolution was most likely influenced by the demand for fodder: The conversion from grazing livestock to feeding livestock.Another evolution was the conversion from livestock production to field crop production.Our results indicate that the intensification of livestock farming systems continued over the last two decades in France.We conclude that, the approach developed in this study can be considered as a generic method for monitoring the transitions between grassland and cropland and further identifying the crop sequence patterns after the grassland conversion from time-series land cover data.展开更多
Cover crops have long been proposed as an alternative soil management for minimizing erosion rates in olive stands while providing additional ecosystem services.However,the trade-off between these benefits and the com...Cover crops have long been proposed as an alternative soil management for minimizing erosion rates in olive stands while providing additional ecosystem services.However,the trade-off between these benefits and the competition for water with the trees makes the definition of optimal management practices a challenging task in semiarid climates.This work presents an improved version of OliveCan,a process-based simulation model of olive orchards that now can simulate the main impacts of cover crops on the water and carbon balances of olive orchards.Albeit simple in its formulation,the new model components were developed to deal with different cover crop management strategies.Examples are presented for simulation runs of a traditional olive orchard in the conditions of southern Spain,evaluating the effects of different widths for the strip occupied by the cover crop(Fcc)and two contrasting mowing dates.Results revealed that high Fccresulted in lower olive yields,but only when mowing was applied at the end of spring.In this regard,late mowing and high Fccwas associated with lower soil water content from spring to summer,coinciding with olive flowering and the earlier stages of fruit growth.Fccwas also negatively correlated with surface runoff irrespective of the mowing date.On the other hand,net ecosystem productivity(NEP)was substantially affected by both Fccand mowing date.Further simulations under future climate scenarios comparing the same management alternatives are also presented,showing substantial yield reductions by the end of the century and minor or negligible changes in NEP and seasonal runoff.展开更多
This study aimed to assess the population density of nematodes and mycorrhizal soil fungi, in areas cultivated with oats, brachiaria, forage and white lupine, as well as in maize and soybean crops in succession, in or...This study aimed to assess the population density of nematodes and mycorrhizal soil fungi, in areas cultivated with oats, brachiaria, forage and white lupine, as well as in maize and soybean crops in succession, in order to generate a microbiological indicator of soil quality. In order to assess nematode and arbuscular mycorrhizal fungi (AMF) population densities, the experiment was performed in two stages: the first assessment was performed in the area where different cover crops were planted, in five seasons (0, 60, 90, 120, 150 days after sowing—DAS). In the second stage, soybean and maize crops in succession were assessed. According to the results, free-living nematodes and arbuscular mycorrhizal fungi population densities were not affected by the cover crop species used and, therefore, these can be grown prior to soybean and corn crops, without impact to free-living nematodes and AMF. The largest population of saprophyte nematodes and AMF occurred at 90 days. The cultivation of soybean and corn did not influence the number of free-living nematodes, but influenced the number of arbuscular mycorrhizal fungi. The highest numbers of mycorrhizal fungi Gigaspora margarita and Glomus macrocarpum were found in maize.展开更多
In recent years, the use of cover crops is becoming a popular technology among growers in many regions of the United States, which is expected to deliver various benefits such as improving soil health, increasing soil...In recent years, the use of cover crops is becoming a popular technology among growers in many regions of the United States, which is expected to deliver various benefits such as improving soil health, increasing soil organic matter, controlling weeds, and helping conserve soil water and nutrients. Although expecting these benefits seems reasonable, it is challenging to know how much of these benefits to expect under specific situations. The potential effect of cover crops on soil water conservation is especially significant because of the documented impact of soil water on crop yield, especially for dryland cropping systems. Some researchers have found that planting a cover crop tended to increase soil water, while others have reported the opposite effect. Information on the impact of cover crops on soil water in cotton (<em>Gossypium hirsutum</em> L.) production systems in South Carolina is currently lacking. Therefore, the objective of this study was to quantify the effect of cover crops on soil water and cotton yield. A field experiment was conducted in South Carolina during winter, spring, and summer of 2015, with three cover crop treatments. The treatments included: 1) rye (<em>Secale cereale </em>L.), planted alone;2) a mix of six cover crop species;and 3) a control treatment with no-cover. The cover crop was established in the winter, terminated in the spring, and cotton was grown during the summer. Soil water was measured at different depths using capacitance probes and a neutron probe. Our results showed no significant differences in soil water and cotton yield among the cover crop treatments. These results suggest that under the humid conditions of this study, any short-term effect of the cover crop on soil water was masked by timely rain.展开更多
Over-application of fertilizer to cropland adversely affects both environmental and agricultural ecosystems. This study examined whether planting a legume-based winter cover crop mix offsets fertilizer application via...Over-application of fertilizer to cropland adversely affects both environmental and agricultural ecosystems. This study examined whether planting a legume-based winter cover crop mix offsets fertilizer application via natural nitrogen inputs. The influence of the cover crop mixture on available nutrients was also assessed. Hairy vetch (<em>Vicia villosa</em>) and winter triticale (×triticosecale) cover crops were planted in fall and terminated in May. Soil fertility data was collected before and after planting the winter cover crop to determine the effect on fixing nitrogen and soil phosphorus, potassium and organic matter levels. Increases of soil ammonium were observed in plots with cover crop treatments. A triticale-hairy vetch cover crop mix was successful at scavenging P for future crops and appears to hold promise for long-term soil fertility benefits.展开更多
The use of cover crops (CC) during the agricultural fallow period has been shown to help alleviate soil compaction and provide stabilizing effects against soil erosion. These benefits are particularly important as man...The use of cover crops (CC) during the agricultural fallow period has been shown to help alleviate soil compaction and provide stabilizing effects against soil erosion. These benefits are particularly important as many of the silty, loess-derived soils of the major land resource area (MLRA) 134, the Southern Mississippi Valley Loess, have large erosion potentials. This study evaluated the effects of CC and no-cover crop (NCC) treatments on a selection of silt-loam soils in MLRA 134. Treatments were implemented during Fall 2018 and Fall 2019 and consisted of a range of CC species. Soil samples from the top 10 cm were collected to evaluate a suite of soil properties. Soil texture, pH, soil organic matter, and Mehlich-3 extractable Mg, Na, and Ca were unaffected (P > 0.05) by CC treatment. Total water-stable aggregate concentration was unaffected (P > 0.05) by CC treatment and soil depth (i.e., 0 - 5 and 5 - 10 cm). Soil bulk density was greater (P •cm<sup>−3</sup>) than under CC treatment (1.24 g•cm<sup>−3</sup>). Water-stable aggregate concentration was unaffected (P > 0.05) by CC treatment and soil depth, but was 21.5 times greater (P •g<sup>−1</sup>) than in the > 4-mm (0.05 g•g<sup>−1</sup>) size class. Study results indicate that, even among sites with large variability, CC can have consistent, short-term, positive effects on soil properties, but a long-term commitment to continuous, annual cover crops is necessary for the full realization of potential benefits.展开更多
Background:This study addressed the potential of combining a high biomass rye winter cover crop with predawn leaf water potential(ΨPD)irrigation thresholds to increase agricultural water use efficiency(WUE)in cotton....Background:This study addressed the potential of combining a high biomass rye winter cover crop with predawn leaf water potential(ΨPD)irrigation thresholds to increase agricultural water use efficiency(WUE)in cotton.To this end,a study was conducted near Tifton,Georgia under a manually-controlled,variable-rate lateral irrigation system using a Scholander pressure chamber approach to measure leaf water potential and impose varying irrigation scheduling treatments during the growing season.ΨPDthresholds were-0.4 MPa(T1),-0.5 MPa(T2),and-0.7 MPa(T3).A winter rye cover crop or conventional tillage were utilized for T1-T3 as well.Results:Reductions in irrigation of up to 10%were noted in this study for the driest threshold(-0.7 MPa)with no reduction in lint yield relative to the-0.4 MPa and-0.5 MPa thresholds.Drier conditions during flowering(2014)limited plant growth and node production,hastened cutout,and decreased yield and WUE relative to 2015.Conclusions:We conclude thatΨPDirrigation thresholds between-0.5 MPa and-0.7 MPa appear to be viable for use in aΨPDscheduling system with adequate yield and WUE for cotton production in the southeastern U.S.Rye cover positively impacted water potential at certain points throughout the growing season but not yield or WUE indicating the potential for rye cover crops to improve water use efficiency should be tested under longer-term production scenarios.展开更多
Soil erosion on cropland is a major source of environmental problems in China ranging from the losses of a non-renewable resource and of nutrients at the source to contamination of downstream areas. Regional soil loss...Soil erosion on cropland is a major source of environmental problems in China ranging from the losses of a non-renewable resource and of nutrients at the source to contamination of downstream areas. Regional soil loss assessments using the Universal Soil Loss Equation (USLE) would supply a scientiifc basis for soil conservation planning. However, a lack of in-formation on the cover and management (C) factor for cropland, one of the most important factors in the USLE, has limited accurate regional assessments in China due to the large number of crops grown and their complicated rotation systems. In this study, single crop soil loss ratios (SLRs) were col ected and quantiifed for 10 primary crops from past studies or re-ports. The mean annual C values for 88 crop rotation systems in 12 cropping system regions were estimated based on the combined effects of single crop SLRs and the percentage of annual rainfal erosivity (R) during the corresponding periods for each system. The C values in different cropping system regions were compared and discussed. The results indicated that the SLRs of the 10 primary crops ranged from 0.15 to 0.74. The mean annual C value for al 88 crop rotation systems was 0.34, with a standard deviation of 0.12. The mean C values in the single, double and triple cropping zones were 0.37, 0.36 and 0.28, respectively, and the C value in the triple zone was signiifcantly different from those in single and double zones. The C values of dryland crop systems exhibited signiifcant differences in the single and triple cropping system regions but the differences in the double regions were not signiifcant. This study is the ifrst report of the C values of crop rotation systems in China at the national scale. It wil provide necessary and practical parameters for accurately assessing regional soil losses from cropland to guide soil conservation plans and to optimize crop rotation systems.展开更多
Soil structure is a dynamic property affected by physical, chemical, and microbiological processes. Addition of organic matter to soils and the use of different management practices have been reported to impact soil s...Soil structure is a dynamic property affected by physical, chemical, and microbiological processes. Addition of organic matter to soils and the use of different management practices have been reported to impact soil structure and crop production. Moderation in soil temperature and increases in microbial activity and soil water retention are often suggested as reasons for the rise in crop yield when organic matter is added to the soil. Less is known about the direct effect of changes in soil structure on crop production. A field experiment was conducted to study the effect of summer cover crop and in-season management system on soil structure. The experiment was a nested design with summer cover crop as the main plot and management system as the subplot. Summer cover crop treatments included cowpea (Vigna unguiculata L. Walp.) incorporated into the soil in the fall (CI), cowpea used as mulch in the fall (CM), sudangrass (Sorghum vulgare) incorporated into the soil in the fall (S), and dry fallow or bare ground (B). Management systems were organic (ORG) and conventional (CNV) systems. Lettuce (Lactuca sativa L.) and cantaloupes (Cucumis melo L.) were cultivated in rotation in the plots for three consecutive years using the same cover crops and management systems for each plot. Disturbed and undisturbed soil cores were collected at the end of the third year and used for laboratory experiments to measure physical, chemical, and hy- draulic properties. Image analysis was used to quantify soil structure properties using a scanning electron micro- scope on thin sections prepared from the undisturbed soil cores. We found that total soil carbon was correlated with porosity, saturation percentage, and pore roughness. Pore roughness was correlated with crop production in gen- eral and with marketable production in particular. We found that the higher the complexity of the pore space, the more water retained in the soil, which may increase soil water residence and reduce plant water stress.展开更多
文摘In addition to their value as cereal grains, wheat (Triticum aestivum L.) and triticale (× Triticosecale Wittmack) are important cool-season annual forages and cover crops. Yearling steer (Bos taurus) performance was compared in the spring following autumn establishment as for age cover crops after soybean [Glycine max (L.) Merr.] grain harvest. Replicated pastures (0.4 ha) were no-till seeded in three consecutive years into soybean stubble in autumn, fertilized, and grazed the following spring near Ithaca, NE, USA. Each pasture (n = 3) was continuously stocked in spring with four yearling steers (380 ± 38 kg) for 17, 32, and 28 d in 2005, 2006, and 2007, respectively. In 2005, average daily gain (ADG) for steers grazing triticale exceeded the ADG for wheat by 0.31 kghd<sup>-1</sup>d<sup>-1</sup>. In 2006, wheat ADG exceeded that for triticale by 0.12 kghd<sup>-1</sup>d<sup>-1</sup>. In 2007, steers grazing wheat lost weight, while steers grazing triticale gained 0.20 kghd<sup>-1</sup>d<sup>-1</sup>. Based on the 3-year average animal gains valued at $1.32 kg<sup>-1</sup>, mean net return ($ ha<sup>-1</sup> yr<sup>-1</sup>) was $62.15 for triticale and $22.55 for wheat. Since these grazed cover crops provide ecosystem services in addition to forage, grazing could be viewed as a mechanism for recovering costs and adds additional value to the system. Based on this 3-year grazing trial, triticale was superior to wheat and likely will provide the most stable beef yearling performance across years with variable weather for the western Cornbelt USA.
基金supported by the National Key Research and Development Program of China(2021YFD1901201-05)the China Agriculture Research System of MOF and MARA(CARS-22)+1 种基金the Special Program for Basic Research and Talent Training of Jiangxi Academy of Agricultural Sciences,China(JXSNKYJCRC202301 and JXSNKYJCRC202325)the National Natural Science Foundation of China(32160766).
文摘The use of cover crops is a promising strategy for influencing the soil microbial consortium,which is essential for the delivery of multiple soil functions(i.e.,soil multifunctionality).Nonetheless,relatively little is known about the role of the soil microbial consortium in mediating soil multifunctionality under different cover crop amendments in dryland Ultisols.Here,we assessed the multifunctionality of soils subjected to four cover crop amendments(control,non-amended treatment;RD,radish monoculture;HV,hairy vetch monoculture;and RDHV,radish-hairy vetch mixture),and we investigated the contributions of soil microbial richness,network complexity,and ecological clusters to soil multifunctionality.Our results demonstrated that cover crops whose chemical composition differed from that of the main plant crop promoted higher multifunctionality,and the radish-hairy vetch mixture rendered the highest enhancement.We obtained evidence that changes in soil microbial richness and network complexity triggered by the cover crops were associated with higher soil multifunctionality.Specifically,specialized microbes in a key ecological cluster(ecological cluster 2)of the soil microbial network were particularly important for maintaining soil multifunctionality.Our results highlight the importance of cover crop-induced variations in functionally important taxa for promoting the soil multifunctionality of dryland Ultisols.
文摘Typical row-crop agricultural practices can potentially be harmful to soil health and future sustainability. The use of cover crops (CC) as a mechanism to improve soil health on a wide scale remains underutilized. Soil health remains a major concern for the sustainability of agricultural productivity, therefore, research into CC implementation as a mean to preserve or improve soil health is warranted. The objective of this study was to evaluate the effects of CC on the soils in the eastern Arkansas portion of the Lower Mississippi River Valley (LMRV) over time for various chemical soil parameters, including pH, soil organic matter (SOM), soil elemental contents (i.e., P, K, Ca, Mg, S, Na, Fe, Mn, Zn, Cu, and B), soil respiration, and a generalized soil health score index. Soil pH decreased over time under both CC and no-cover-crop (NCC) treatments, by −0.3 and −0.2, respectively. Soil OM decreased over time under NCC by −0.1%, but did not differ between CC treatments. Soil N availability decreased over time under NCC (−22.6 kg·ha−1), but did not change over time under CC. Soil respiration decreased over time under both CC and NCC, by −76.1 mg·L−1 and −77.3 mg·L−1, respectively, though there was no effect of CC treatment. The Haney soil health score index decreased under CC (−7.0) and NCC (−6.8) without an effect from CC treatment. Results of the study place emphasis on the temporal nature of soil health as influenced by cover crops and their potential to improve soil health.
基金supported by "13115" Science and Tech-nology Innovation Programme of Shaanxi Province,China (2007ZDKG-09)the National Agricultural Industrial Technology System Foundation of China(Z225020901)Young Academic Backbone Scientific Research Program of Northwest A&F University,China (01140303)
文摘This study was conducted to determine the effect of cover crop inter-row in vineyard on main mono-phenol content of grape berry and wine. Three such cover crops, two perennial legumes (white clover and alfalfa) and a perennial gramineous grass (tall fescue) were sown in vineyard. The main phenolic compounds of mature grape berry and wines vinified under the same conditions were extracted with ethyl acetate and diethyl ether and analyzed by high- performance liquid chromatography (HPLC) by comparing to soil tillage. A total of ten phenolic compounds were identified and quantified in the different grape berry and wines, including nonflavonoids (hydroxybenzoic and hydroxycinnamic acids) and flavonoids (flavanols and flavonols). The concentration of flavonoid compounds (409.43 to 538.63 mg kg^-1 and 56.16 to 81.30 mg L^-1) was higher than nonflavonoids (76.91 to 98.85 mg kg^-1 and 30.65 to 41.22 mg L^-1) for Cabernet Sauvignon grape and wine under different treatments, respectively. In the flavonoid phenolics, Catechin was the most abundant in the different grapes and wines, accounting for 74.94 to 79.70% and 48.60 to 50.62% of total nonanthocyanin phenolics quantified, respectively. Compared to soil tillage, the sward treatments showed a higher content of main mono-phenol and total nonanthocyanin phenolics in grapes and wines. There were significant differences between two cover crop treatments (tall fescue and white clover) and soil tillage for the content of benzoic acid, salicylic acid, caffeic acid, catechin, and total phenolics in the grape berry (P 〈 0.05 or P〈0.01). The wine from tall fescue cover crop had the highest gallic acid, caffeic acid and catechin. Cover crop system increased the total nonanthocyanin phenolics of grapes and wines in order of the four treatments: tall fescue, white clover, alfalfa, and soil tillage (control). Cover crop in vineyard increased total phenols of grape berry and wine, and thus improved the quality of wine evidently.
文摘Cover crops are the plants which are grown to improve soil fertility, prevent soil erosion, enrichment and protection of soil, and enhance nutrient and water availability, and quality of soil. Cover crops provide several benefits to soils used for agriculture production. Cover crops are helpful in increasing and sustaining microbial biodiversity in soils. We summarized the effect of several cover crops in soil properties such as soil moisture content, soil microbial activities, soil carbon sequestration, nitrate leaching, soil water, and soil health. Selection of cover crops usually depends on the primary benefits which are provided by cover crops. Other factors may also include weather conditions, time of sowing, either legume or non-legume and timing and method of killing of a cover crop. In recent times, cover crops are also used for mitigating climate change, suppressing weeds in crops and increasing exchangeable nutrients such as Mg2+ and K+. Cover crops are also found to be economical in long-term experiment studies. Although some limitations always come with several benefits. Cover crops have some problems including the method of killing, host for pathogens, regeneration, and not immediate benefits of using them. Despite the few limitations, cover crops improve the overall health of the soil and provide a sustainable environment for the main crops.
基金supported by the National Natural Science Foundation of China(31501274,31171509,30671222,31270488)the Special Fund for Agro-scientific Research in the Public Interest,China(201103001)the National Key Technologies R&D Program of China during the 12th Five-Year Plan period(2011BAD16B15)
文摘Annual ryegrass(Lolium multiflorum Lam.), a non-leguminous winter cover crop, has been adopted to absorb soil native N to minimize N loss from an intensive double rice cropping system in southern China, but a little is known about its effects on rice grain yield and rice N use efficiency. In this study, effects of ryegrass on double rice yield, N uptake and use efficiency were measured under different fertilizer N rates. A 3-year(2009–2011) field experiment arranged in a split-plot design was undertaken. Main plots were ryegrass(RG) as a winter cover crop and winter fallow(WF) without weed. Subplots were three N treatments for each rice season: 0(N_0), 100(N_(100)) and 200 kg N ha–1(N_(200)). In the 3-year experiment, RG reduced grain yield and plant N uptake for early rice(0.4–1.7 t ha–1 for grain yield and 4.6–20.3 kg ha–1 for N uptake) and double rice(0.6–2.0 t ha–1 for grain yield and 6.3–27.0 kg ha–1 for N uptake) when compared with WF among different N rates. Yield and N uptake decrease due to RG was smaller in N_(100) and N_(200) plots than in N_0 plots. The reduction in early rice grain yield in RG plots was associated with decrease number of panicles. Agronomic N use efficiency and fertilizer N recovery efficiency were higher in RG plots than winter fallow for early rice and double rice among different N rates and experimental years. RG tended to have little effect on grain yield, N uptake, agronomic N use efficiency, and fertilizer N recovery efficiency in the late rice season. These results suggest that ryegrass may reduce grain yield while it improves rice N use efficiency in a double rice cropping system.
文摘A common crop rotation in the west Iran is wheat-fallow-corn. The fallow period after wheat harvest (during fall and winter) can lead to soil erosion, nutrient losses (e.g. nitrate leaching) and offsite movement of pesticides. This period is an ideal time to establish a cover crop. In order to investigate the effects of different autumn-seeded cover crops on subsequent irrigated corn response to nitrogen fertilizer, field studies were carried out during the 2007-2008 growing season at the Agricultural Research Farm, Razi University, Kermanshah, Iran. The experiment was conducted in a split plot arrangement based on a randomized complete block design with three replications. The main plots consisted of four cover crops including alfalfa (Medicago sativa L.), berseem clover (Trifolium alexandrinum L.), common vetch (Vicia sativa L.) and winter rye (Secale cereale L.) and a control (no cover crop). The sub plots consisted of two fertilizer N rates (0 and 250 kg ha-1). Cover crops were grown for nearly 5 months and then were incorporated into the soil as green manures. The results indicated that corn plant traits including seed yield, the number of seeds per ear and leaf chlorophyll content were significantly influenced by cover crops. Whereas, the cover crops had no signif-icant effects on the number of ears per plant, 100-seed weight and harvest index of corn. Among the cover crop species, common vetch produced higher dry weight and showed the highest positive effects on the corn plant traits. Dry weight produced by this cover crop was 56.41, 120.16 and 124.19% higher than those of winter rye, berseem clover and alfalfa, respectively. Common vetch enhanced seed yield, the number of seeds per ear and leaf chlorophyll content of corn by 46.30, 21.95 and 8.52%, respectively, compared to control. All of the corn traits under study, except the number of ears per plant and harvest index were significantly improved by nitrogen fertilizer. In general, this study revealed that the autumn-seeded cover crops, especially common vetch can be used to improve corn yield. However, the cover crops should be supplemented with nitrogen fertilizer to obtain optimal results.
基金support from the National Social Science Fund of China(18ZDA048)。
文摘Green manure cover crops(GMCCs)planting has a potential for mitigating greenhouse gas emissions(GHG)in agroecosystems and provides important ecosystem services,thereby achieving the Sustainable Development Goals(SDGs)stipulated by the United Nations.However,the advantages of cultivating GMCCs on arable land are not widely recognized.For example,in the whole of China,the GMCCs planting area is less than 3.5%of total arable land.The aim of this study is to explore reasons for the low adoption rate of GMCCs planting.Using best–worst scaling(BWS)approach,farmers ranked their preferred conservation practices including three types of GMCC cropping systems.Taking Gansu Province in Northwest China as a case study,a survey with 276 farmers was conducted.The findings indicated that three factors are related to the low adoption rate of GMCCs:1)farmers preferred improving farmland irrigation facilities and substituting chemical fertilizers with organic rather than planting GMCCs;2)lack of awareness and understanding of government policy on GMCCs and limited access to training courses;3)financial support and subsidies from the government are insufficient.This study provides insights and strategic implications for policymakers on how to further promote GMCCs in the future.
文摘The functional diversity of rhizosphere microflora which is also known as the “microbial community” is a sensitive indicator of soil quality subject to the type of winter cover crop and straw returning.In order to evaluate the effects of different winter cover crops and returning patterns on the functional diversity of rhizosphere microflora in double-crop rice paddies,we designed five winter cover crops and straw returning combinations to analyze their effects on the functional diversity of rhizosphere microflora in rice paddies: ryegrass (Lolium multiflorumL.)–double-crop rice (Ry),milk vetch (Astragalus sinicus L.)–double-crop rice (Mv),Rape (Brassica napus L.)–Double-crop rice (Ra), Potato (Solanum tuberosum L.)–double-crop rice (Po),and winter fallow–doublecrop rice (CK,the control).In this paper,the average well color development (AWCD) in Biolog-GN plates indicated the capacity for carbon utilization by the rhizosphere microbial community.We analyzed the rhizosphere microbial community functional diversity of the paddy soils with the above five treatments by using the Biolog-GN system.The results showed that applications of winter cover crop and straw returning caused high increases in AWCD compared with CK,and the AWCD values for samples with Po treatment was greater than those with Ry and CK treatments at the early and late rice maturity stages. It was concluded that applications of winter cover crop and straw returning can cause changes in the carbon utilization efficiency of rhizosphere microflora.There were differences in the genetic diversity of the rhizosphere microflora among different treatments at the maturity stage of early and late rice.The richness,Shannon,and McIntosh Index under different winter cover crop and straw returning treatments were significantly different.The highest indexes were observed in the Po treatment and the lowest in the CK at the maturity stage of early and late rice.The richness, Shannon,and McIntosh Index under different treatments ranked in descending order is as follows: Po>Ra>Mv>Ry>CK.Principal Component Analysis (PCA) of substrate reactions were conducted in this research.The results indicated that the pattern of carbon source utilization varied with winter cover crop treatments,and that carbohydrates and amino acids were the main carbon sources of rhizosphere microorganisms.To conclude,the application of winter cover crop and straw returning to paddy fields could significantly increase the carbon source utilization, species richness,and species evenness of rhizosphere microflora in double-crop rice paddies.
文摘Soil compaction is a significant problem in the Southeastern USA. This compacted zone or hardpan limits root penetration below this layer and reduces potential yield and makes plants more susceptible to drought induced stresses. Soil compaction in this region is managed using costly annual deep tillage at or before planting and there is a great interest in reducing and/or eliminating annual tillage operations to lower production costs. Deep rooted cool season cover crops can penetrate this compacted soil zone and create channels, which cash crop roots, such as cotton, could follow to capture moisture and nutrients stored in the subsoil. The cool season cover crop roots would reduce the need for annual deep tillage prior to planting, increases soil organic matter, which provides greater water infiltration and available water holding capacity. Field studies were conducted for two years with three different soil series to determine the effects of tillage systems and cool season cover crops on the soil chemical and physical properties, yield responses, and pest pressure. Results showed that cool season cover crops significantly reduced soil compaction, increased cotton lint yield and soil moisture content, reduced nematode population densities, and increased soil available P, K, Mn, and organic matter content compared to the conventional no-cover crop.
基金Department SAD of INRA(French National Institute for Agricultural Research)and the Council of Lorraine for supporting the Ph D fellowship of the first author
文摘Grassland, as one of the largest ecosystems on the earth, supports various goods and services to humanity.Historically, humans have increased agricultural output primarily by cropland expansion and agricultural intensification.The cropland area was primarily gained at the expense of grassland and forests.Apart from grassland conversion, increasing consumption of calorie- and meat-intensive diets drives the intensification of livestock systems, which is shifting steadily from grazing to feeding with crops.To cope with the environmental degradation due to agriculture, various forms of ‘green payment' were implemented to promote the adoption of sustainable farming practices over the last two decades in the European Union.The aim of this study is to monitor the recent transitions(1992–2010) between grassland and cropland during two Common Agricultural Policy(CAP) reforms at the French mainland scale.We proposed an innovative approach to link grassland conversion to agricultural commodities and farming systems practices.We first assessed the grassland-to-cropland conversion and further investigated the crop sequence patterns that were observed to be dominant after the conversion through mining land-cover survey data Teruti and Teruti-Lucas.We found the trends of the transitions between grassland and cropland over the two time intervals: The loss of grassland(1992–2003) and restoration or re-expansion of grassland(2006–2010) in mainland France.Our finding on the crop sequence patterns after the grassland conversion reveals two notable evolutions of agricultural production systems.These evolutions were related to the increase in the proportion of cropland in the total agricultural land use.One evolution was most likely influenced by the demand for fodder: The conversion from grazing livestock to feeding livestock.Another evolution was the conversion from livestock production to field crop production.Our results indicate that the intensification of livestock farming systems continued over the last two decades in France.We conclude that, the approach developed in this study can be considered as a generic method for monitoring the transitions between grassland and cropland and further identifying the crop sequence patterns after the grassland conversion from time-series land cover data.
基金Consejería de Transformación Económica,Industria,Conocimiento y Universidades"("Junta de Andalucía",Spain)through a project cofunded by ERDF[grant number 27425]part of the work was conducted under two projects funded by"Ministerio de Ciencia,Innovación y Universidades"+7 种基金Spain[grant numbers PID2019-110575RB-I00 and PCI2019-103621]one of which into the framework of the MAPPY project(JPIClimate ERA-NET,AXIS call)financial support from"Ministerio de CienciaInnovación y Universidades",through the Severo Ochoa and María de Maeztu Program for Centers and Units of Excellence in R&D[grant number CEX2019-000968-M]granted to the first and second authors by Consejería de Transformación Económica,IndustriaConocimiento y Universidades"("Junta de Andalucia",Spain)[grant number POSTDOC-21-00381]"Ministerio de Universidades(’María Zambrano’scholarship)[grant number 2021/86493],respectively。
文摘Cover crops have long been proposed as an alternative soil management for minimizing erosion rates in olive stands while providing additional ecosystem services.However,the trade-off between these benefits and the competition for water with the trees makes the definition of optimal management practices a challenging task in semiarid climates.This work presents an improved version of OliveCan,a process-based simulation model of olive orchards that now can simulate the main impacts of cover crops on the water and carbon balances of olive orchards.Albeit simple in its formulation,the new model components were developed to deal with different cover crop management strategies.Examples are presented for simulation runs of a traditional olive orchard in the conditions of southern Spain,evaluating the effects of different widths for the strip occupied by the cover crop(Fcc)and two contrasting mowing dates.Results revealed that high Fccresulted in lower olive yields,but only when mowing was applied at the end of spring.In this regard,late mowing and high Fccwas associated with lower soil water content from spring to summer,coinciding with olive flowering and the earlier stages of fruit growth.Fccwas also negatively correlated with surface runoff irrespective of the mowing date.On the other hand,net ecosystem productivity(NEP)was substantially affected by both Fccand mowing date.Further simulations under future climate scenarios comparing the same management alternatives are also presented,showing substantial yield reductions by the end of the century and minor or negligible changes in NEP and seasonal runoff.
文摘This study aimed to assess the population density of nematodes and mycorrhizal soil fungi, in areas cultivated with oats, brachiaria, forage and white lupine, as well as in maize and soybean crops in succession, in order to generate a microbiological indicator of soil quality. In order to assess nematode and arbuscular mycorrhizal fungi (AMF) population densities, the experiment was performed in two stages: the first assessment was performed in the area where different cover crops were planted, in five seasons (0, 60, 90, 120, 150 days after sowing—DAS). In the second stage, soybean and maize crops in succession were assessed. According to the results, free-living nematodes and arbuscular mycorrhizal fungi population densities were not affected by the cover crop species used and, therefore, these can be grown prior to soybean and corn crops, without impact to free-living nematodes and AMF. The largest population of saprophyte nematodes and AMF occurred at 90 days. The cultivation of soybean and corn did not influence the number of free-living nematodes, but influenced the number of arbuscular mycorrhizal fungi. The highest numbers of mycorrhizal fungi Gigaspora margarita and Glomus macrocarpum were found in maize.
文摘In recent years, the use of cover crops is becoming a popular technology among growers in many regions of the United States, which is expected to deliver various benefits such as improving soil health, increasing soil organic matter, controlling weeds, and helping conserve soil water and nutrients. Although expecting these benefits seems reasonable, it is challenging to know how much of these benefits to expect under specific situations. The potential effect of cover crops on soil water conservation is especially significant because of the documented impact of soil water on crop yield, especially for dryland cropping systems. Some researchers have found that planting a cover crop tended to increase soil water, while others have reported the opposite effect. Information on the impact of cover crops on soil water in cotton (<em>Gossypium hirsutum</em> L.) production systems in South Carolina is currently lacking. Therefore, the objective of this study was to quantify the effect of cover crops on soil water and cotton yield. A field experiment was conducted in South Carolina during winter, spring, and summer of 2015, with three cover crop treatments. The treatments included: 1) rye (<em>Secale cereale </em>L.), planted alone;2) a mix of six cover crop species;and 3) a control treatment with no-cover. The cover crop was established in the winter, terminated in the spring, and cotton was grown during the summer. Soil water was measured at different depths using capacitance probes and a neutron probe. Our results showed no significant differences in soil water and cotton yield among the cover crop treatments. These results suggest that under the humid conditions of this study, any short-term effect of the cover crop on soil water was masked by timely rain.
文摘Over-application of fertilizer to cropland adversely affects both environmental and agricultural ecosystems. This study examined whether planting a legume-based winter cover crop mix offsets fertilizer application via natural nitrogen inputs. The influence of the cover crop mixture on available nutrients was also assessed. Hairy vetch (<em>Vicia villosa</em>) and winter triticale (×triticosecale) cover crops were planted in fall and terminated in May. Soil fertility data was collected before and after planting the winter cover crop to determine the effect on fixing nitrogen and soil phosphorus, potassium and organic matter levels. Increases of soil ammonium were observed in plots with cover crop treatments. A triticale-hairy vetch cover crop mix was successful at scavenging P for future crops and appears to hold promise for long-term soil fertility benefits.
文摘The use of cover crops (CC) during the agricultural fallow period has been shown to help alleviate soil compaction and provide stabilizing effects against soil erosion. These benefits are particularly important as many of the silty, loess-derived soils of the major land resource area (MLRA) 134, the Southern Mississippi Valley Loess, have large erosion potentials. This study evaluated the effects of CC and no-cover crop (NCC) treatments on a selection of silt-loam soils in MLRA 134. Treatments were implemented during Fall 2018 and Fall 2019 and consisted of a range of CC species. Soil samples from the top 10 cm were collected to evaluate a suite of soil properties. Soil texture, pH, soil organic matter, and Mehlich-3 extractable Mg, Na, and Ca were unaffected (P > 0.05) by CC treatment. Total water-stable aggregate concentration was unaffected (P > 0.05) by CC treatment and soil depth (i.e., 0 - 5 and 5 - 10 cm). Soil bulk density was greater (P •cm<sup>−3</sup>) than under CC treatment (1.24 g•cm<sup>−3</sup>). Water-stable aggregate concentration was unaffected (P > 0.05) by CC treatment and soil depth, but was 21.5 times greater (P •g<sup>−1</sup>) than in the > 4-mm (0.05 g•g<sup>−1</sup>) size class. Study results indicate that, even among sites with large variability, CC can have consistent, short-term, positive effects on soil properties, but a long-term commitment to continuous, annual cover crops is necessary for the full realization of potential benefits.
基金Funding was made available through the Georgia Cotton Commission and was funded with producer checkoff funds to improve cotton production within the state of Georgia。
文摘Background:This study addressed the potential of combining a high biomass rye winter cover crop with predawn leaf water potential(ΨPD)irrigation thresholds to increase agricultural water use efficiency(WUE)in cotton.To this end,a study was conducted near Tifton,Georgia under a manually-controlled,variable-rate lateral irrigation system using a Scholander pressure chamber approach to measure leaf water potential and impose varying irrigation scheduling treatments during the growing season.ΨPDthresholds were-0.4 MPa(T1),-0.5 MPa(T2),and-0.7 MPa(T3).A winter rye cover crop or conventional tillage were utilized for T1-T3 as well.Results:Reductions in irrigation of up to 10%were noted in this study for the driest threshold(-0.7 MPa)with no reduction in lint yield relative to the-0.4 MPa and-0.5 MPa thresholds.Drier conditions during flowering(2014)limited plant growth and node production,hastened cutout,and decreased yield and WUE relative to 2015.Conclusions:We conclude thatΨPDirrigation thresholds between-0.5 MPa and-0.7 MPa appear to be viable for use in aΨPDscheduling system with adequate yield and WUE for cotton production in the southeastern U.S.Rye cover positively impacted water potential at certain points throughout the growing season but not yield or WUE indicating the potential for rye cover crops to improve water use efficiency should be tested under longer-term production scenarios.
基金financially supported by the Fund for Creative Research Groups of National Natural Science Foundation of China (41321001)
文摘Soil erosion on cropland is a major source of environmental problems in China ranging from the losses of a non-renewable resource and of nutrients at the source to contamination of downstream areas. Regional soil loss assessments using the Universal Soil Loss Equation (USLE) would supply a scientiifc basis for soil conservation planning. However, a lack of in-formation on the cover and management (C) factor for cropland, one of the most important factors in the USLE, has limited accurate regional assessments in China due to the large number of crops grown and their complicated rotation systems. In this study, single crop soil loss ratios (SLRs) were col ected and quantiifed for 10 primary crops from past studies or re-ports. The mean annual C values for 88 crop rotation systems in 12 cropping system regions were estimated based on the combined effects of single crop SLRs and the percentage of annual rainfal erosivity (R) during the corresponding periods for each system. The C values in different cropping system regions were compared and discussed. The results indicated that the SLRs of the 10 primary crops ranged from 0.15 to 0.74. The mean annual C value for al 88 crop rotation systems was 0.34, with a standard deviation of 0.12. The mean C values in the single, double and triple cropping zones were 0.37, 0.36 and 0.28, respectively, and the C value in the triple zone was signiifcantly different from those in single and double zones. The C values of dryland crop systems exhibited signiifcant differences in the single and triple cropping system regions but the differences in the double regions were not signiifcant. This study is the ifrst report of the C values of crop rotation systems in China at the national scale. It wil provide necessary and practical parameters for accurately assessing regional soil losses from cropland to guide soil conservation plans and to optimize crop rotation systems.
文摘Soil structure is a dynamic property affected by physical, chemical, and microbiological processes. Addition of organic matter to soils and the use of different management practices have been reported to impact soil structure and crop production. Moderation in soil temperature and increases in microbial activity and soil water retention are often suggested as reasons for the rise in crop yield when organic matter is added to the soil. Less is known about the direct effect of changes in soil structure on crop production. A field experiment was conducted to study the effect of summer cover crop and in-season management system on soil structure. The experiment was a nested design with summer cover crop as the main plot and management system as the subplot. Summer cover crop treatments included cowpea (Vigna unguiculata L. Walp.) incorporated into the soil in the fall (CI), cowpea used as mulch in the fall (CM), sudangrass (Sorghum vulgare) incorporated into the soil in the fall (S), and dry fallow or bare ground (B). Management systems were organic (ORG) and conventional (CNV) systems. Lettuce (Lactuca sativa L.) and cantaloupes (Cucumis melo L.) were cultivated in rotation in the plots for three consecutive years using the same cover crops and management systems for each plot. Disturbed and undisturbed soil cores were collected at the end of the third year and used for laboratory experiments to measure physical, chemical, and hy- draulic properties. Image analysis was used to quantify soil structure properties using a scanning electron micro- scope on thin sections prepared from the undisturbed soil cores. We found that total soil carbon was correlated with porosity, saturation percentage, and pore roughness. Pore roughness was correlated with crop production in gen- eral and with marketable production in particular. We found that the higher the complexity of the pore space, the more water retained in the soil, which may increase soil water residence and reduce plant water stress.