In order to overcome the defects that the analysis of multi-well typical curves of shale gas reservoirs is rarely applied to engineering,this study proposes a robust production data analysis method based on deconvolut...In order to overcome the defects that the analysis of multi-well typical curves of shale gas reservoirs is rarely applied to engineering,this study proposes a robust production data analysis method based on deconvolution,which is used for multi-well inter-well interference research.In this study,a multi-well conceptual trilinear seepage model for multi-stage fractured horizontal wells was established,and its Laplace solutions under two different outer boundary conditions were obtained.Then,an improved pressure deconvolution algorithm was used to normalize the scattered production data.Furthermore,the typical curve fitting was carried out using the production data and the seepage model solution.Finally,some reservoir parameters and fracturing parameters were interpreted,and the intensity of inter-well interference was compared.The effectiveness of the method was verified by analyzing the production dynamic data of six shale gas wells in Duvernay area.The results showed that the fitting effect of typical curves was greatly improved due to the mutual restriction between deconvolution calculation parameter debugging and seepage model parameter debugging.Besides,by using the morphological characteristics of the log-log typical curves and the time corresponding to the intersection point of the log-log typical curves of two models under different outer boundary conditions,the strength of the interference between wells on the same well platform was well judged.This work can provide a reference for the optimization of well spacing and hydraulic fracturing measures for shale gas wells.展开更多
The chaotic dynamic snap-through and complex nonlinear vibrations are investigated in a rectangular asymmetric cross-ply bistable composite laminated cantilever shell,in cases of 1:2 inter-well internal resonance and ...The chaotic dynamic snap-through and complex nonlinear vibrations are investigated in a rectangular asymmetric cross-ply bistable composite laminated cantilever shell,in cases of 1:2 inter-well internal resonance and primary resonance.The transverse foundation excitation is applied to the fixed end of the structure,and the other end is in a free state.The first-order approximate multiple scales method is employed to perform the perturbation analysis on the dimensionless two-degree-of-freedom ordinary differential motion control equation.The four-dimensional averaged equations are derived in both polar and rectangular coordinate forms.Deriving from the obtained frequency-amplitude and force-amplitude response curves,a detailed analysis is conducted to examine the impacts of excitation amplitude,damping coefficient,and tuning parameter on the nonlinear internal resonance characteristics of the system.The nonlinear softening characteristic is exhibited in the upper stable-state,while the lower stable-state demonstrates the softening and linearity characteristics.Numerical simulation is carried out using the fourth-order Runge-Kutta method,and a series of nonlinear response curves are plotted.Increasing the excitation amplitude further elucidates the global bifurcation and chaotic dynamic snap-through characteristics of the bistable cantilever shell.展开更多
To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concret...To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concrete T-beams,destructive tests were conducted on full-scale pre-stressed concrete beams.Based on the measurement and ana-lysis of beam deflection,strain,and crack development under various loading levels during the research tests,combined with the verification coefficient indicators specified in the codes,the verification coefficients of bridges at different stages of damage can be examined.The results indicate that the T-beams experience complete,incom-plete linear,and non-linear stages during the destructive test process.In the complete linear elastic stage,both the deflection and bottom strain verification coefficients comply with the specifications,indicating a good structural load-bearing capacity no longer adheres to the code’s requirements.In the non-linear stage,both coefficients exhi-bit a sharp increase,resulting in a further decrease in the structure’s load-bearing capacity.According to the pro-visions of the current code,the beam can be in the incomplete linear stage when both values fall within the code’s specified range.The strain verification coefficient sourced from the compression zone at the bottom of theflange is not recommended for assessing the bridge’s load-bearing capacity.展开更多
AIM:To measure the optimal anterior chamber pressure(ACP)for safe phacoemulsification using a new tube chamber system with internal pressure measurement function in the porcine eye.METHODS:The 20-gauge and 21-gauge st...AIM:To measure the optimal anterior chamber pressure(ACP)for safe phacoemulsification using a new tube chamber system with internal pressure measurement function in the porcine eye.METHODS:The 20-gauge and 21-gauge straight tips with yellow and orange sleeves,respectively,were covered by a test chamber combined with a pressure sensor for measuring ACP.This was measured for 20s from 10s after starting aspiration in the linear mode using vacuum levels of 200 and 150 mm Hg with a 20-gauge tip,and 300 and 250 mm Hg with a 21-gauge tip.Using a porcine eye,a pressure sensor fixed with a 0.9 mm corneal incision measured ACP.For the posterior capsule contact assay,porcine eyes were treated as described above,and the ultrasonic needle tip was held at the height of the iris and aspirated for 30s in linear mode at a vacuum of 200 and 150 mm Hg for the 20-gauge tip,and 300 and 250 mm Hg for the 21-gauge tip.The bottle height at which the posterior capsule accidentally contacted the ultrasonic tip was recorded,and the estimated ACP was calculated.RESULTS:The internal pressure of the new tube chamber system and ACP from the porcine eye closely matched proportional changes at vacuum levels of 200 and 150 mm Hg with 20-gauge tips.Similarly,proportional changes at vacuum levels of 300 and 250 mm Hg with the 21-gauge tip were nearly equal.The bottle height at which the posterior capsule contacted with the tip and estimated ACP were 57.5±12.6 cm(20.2±7.9 mm Hg)at 200 mm Hg with a 20-gauge tip,35.0±10.0 cm(16.6±6.3 mm Hg)at 150 mm Hg with a 20-gauge tip,47.5±12.6 cm(18.7±8.7 mm Hg)at 300 mm Hg with a 21-gauge tip,and 32.5±5.0 cm(15.7±3.5 mm Hg)at 250 mm Hg with a 21-gauge tip.CONCLUSION:A comprehensive understanding of this chamber system’s characteristics and usage can resolve anterior chamber instability caused by changing preoperative settings on the phaco machine.展开更多
Understanding the stress distribution derived from monitoring the principal stress(PS)in slopes is of great importance.In this study,a miniature sensor for quantifying the two-dimensional(2D)PS in landslide model test...Understanding the stress distribution derived from monitoring the principal stress(PS)in slopes is of great importance.In this study,a miniature sensor for quantifying the two-dimensional(2D)PS in landslide model tests is proposed.The fundamental principle and design of the sensor are demonstrated.The sensor comprises three earth pressure gages and one gyroscope,with the utilization of three-dimensional(3D)printing technology.The difficulties of installation location during model preparation and sensor rotation during testing can be effectively overcome using this sensor.Two different arrangements of the sensors are tested in verification tests.Additionally,the application of the sensor in an excavated-induced slope model is tested.The results demonstrate that the sensor exhibits commendable performance and achieves a desirable level of accuracy,with a principal stress angle error of±5°in the verification tests.The stress transformation of the slope model,generated by excavation,is demonstrated in the application test by monitoring the two miniature principal stress(MPS)sensors.The sensor has a significant potential for measuring primary stress in landslide model tests and other geotechnical model experiments.展开更多
A fault is a geological structure characterized by significant displacement of rock masses along a fault plane within the Earth's crust.The Yunnan Tabaiyi Tunnel intersects multiple fault zones,making tunnel const...A fault is a geological structure characterized by significant displacement of rock masses along a fault plane within the Earth's crust.The Yunnan Tabaiyi Tunnel intersects multiple fault zones,making tunnel construction in fault-prone areas particularly vulnerable to the effects of fault activity due to the complexities of the surrounding geological environment.To investigate the dynamic response characteristics of tunnel structures under varying surrounding rock conditions,a three-dimensional large-scale shaking table physical model test was conducted.This study also aimed to explore the damage mechanisms associated with the Tabaiyi Tunnel under seismic loading.The results demonstrate that poor quality surrounding rock enhances the seismic response of the tunnel.This effect is primarily attributed to the distribution characteristics of acceleration,dynamic strain,and dynamic soil pressure.A comparison between unidirectional and multi-directional(including vertical)seismic motions reveals that vertical seismic motion has a more significant impact on specific tunnel locations.Specifically,the maximum tensile stress is observed at the arch shoulder,with values ranging from 60 to 100 k Pa.Moreover,NPR(Non-Prestressed Reinforced)anchor cables exhibit a substantial constant resistance effect under low-amplitude seismic waves.However,when the input earthquake amplitude reaches 0.8g,local sliding occurs at the arch shoulder region of the NPR anchor cable.These findings underscore the importance of focusing on seismic mitigation measures in fault zones and reinforcing critical areas,such as the arch shoulders,in practical engineering applications.展开更多
Shotcrete is one of the common solutions for shallow sliding.It works by forming a protective layer with high strength and cementing the loose soil particles on the slope surface to prevent shallow sliding.However,the...Shotcrete is one of the common solutions for shallow sliding.It works by forming a protective layer with high strength and cementing the loose soil particles on the slope surface to prevent shallow sliding.However,the solidification time of conventional cement paste is long when shotcrete is used to treat cohesionless soil landslide.The idea of reinforcing slope with polyurethane solidified soil(i.e.,mixture of polyurethane and sand)was proposed.Model tests and finite element analysis were carried out to study the effectiveness of the proposed new method on the emergency treatment of cohesionless soil landslide.Surcharge loading on the crest of the slope was applied step by step until landslide was triggered so as to test and compare the stability and bearing capacity of slope models with different conditions.The simulated slope displacements were relatively close to the measured results,and the simulated slope deformation characteristics were in good agreement with the observed phenomena,which verifies the accuracy of the numerical method.Under the condition of surcharge loading on the crest of the slope,the unreinforced slope slid when the surcharge loading exceeded 30 k Pa,which presented a failure mode of local instability and collapse at the shallow layer of slope top.The reinforced slope remained stable even when the surcharge loading reached 48 k Pa.The displacement of the reinforced slope was reduced by more than 95%.Overall,this study verifies the effectiveness of polyurethane in the emergency treatment of cohesionless soil landslide and should have broad application prospects in the field of geological disasters concerning the safety of people's live.展开更多
Antimicrobial resistance(AMR)represents a substantial threat to global public health,complicating the treatment of common infections and leading to prolonged illness and escalated healthcare expenses.To effectively co...Antimicrobial resistance(AMR)represents a substantial threat to global public health,complicating the treatment of common infections and leading to prolonged illness and escalated healthcare expenses.To effectively combat AMR,timely and accurate detection is crucial for AMR surveillance and individual-based therapy.Phenotypic antibiotic resistance testing(AST)has long been considered the gold standard in clinical applications,serving as the foundation for clinical AMR diagnosis and optimized therapy.It has significantly contributed to ensuring patients′health and the development of novel antimicrobials.Despite advancements in automated culture-based AST technologies,inherent limitations impede the widespread use of phenotypic AST in AMR surveillance.Genotypic AST technologies offer a promising alternative option,exhibiting advantages of rapidity,high sensitivity,and specificity.With the continuous advancement and expanding applications of genotypic AST technologies,such as microfluidics,mass spectrometry,and high-resolution melting curve analysis,new vigor has been injected into the development and clinical implementation of genotypic AST technologies.In this narrative review,we discuss the principles,applications,and advancements of emerging genotypic AST methods in clinical settings.The comprehensive review aims to highlight the significant scientific potential of emerging genotypic AST technologies in clinical AMR diagnosis,providing insights to enhance existing methods and explore novel approaches.展开更多
Based on the characteristics of injection-production units in fractured-vuggy carbonate reservoirs,nine groups of experiments were designed and performed to analyze the interference characteristics and their influenci...Based on the characteristics of injection-production units in fractured-vuggy carbonate reservoirs,nine groups of experiments were designed and performed to analyze the interference characteristics and their influencing factors during water flooding.Based on percolation theory,an inversion model for simulating waterflooding interferences was proposed to study the influence laws of different factors on interference characteristics.The results show that well spacing,permeability ratio,cave size,and cave location all affect the interference characteristics of water flooding.When the cave is located in high permeability fractures,or in the small well spacing direction,or close to the producer in an injection-production unit,the effects of water flooding are much better.When the large cave is located in the high-permeability or small well spacing direction,the well in the direction with lower permeability or smaller well spacing will see water breakthrough earlier.When the cave is in the higher permeability direction and the reserves between the water injector and producer differ greatly,the conductivity differences in different injection-production directions are favorable for water flooding.When the injection-production well pattern is constructed or recombined,it’s better to make the reserves of caves in different injection-production directions proportional to permeability,and inversely proportional to the well spacing.The well close to the cave should be a producer,and the well far from the cave should be an injector.Different ratios of cave reserves to fracture reserves correspond to different optimal well spacings and optimal permeability ratios.Moreover,both optimal well spacing and optimal permeability ratio increase as the ratio of cave reserves to fracture reserves increases.展开更多
Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic st...Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic stress conditions.Under these conditions,it is assumed that the intermediate principal stress(σ_(2))equals the minimum principal stress(σ_(3)).This assumption overlooks the potential variations in magnitudes of in situ stress conditions along all three directions near an underground opening where a rock bolt is installed.In this study,a series of push tests was meticulously conducted under triaxial conditions.These tests involved applying non-uniform confining stresses(σ_(2)≠σ_(3))to cubic specimens,aiming to unveil the previously overlooked influence of intermediate principal stresses on the strength properties of rock bolts.The results show that as the confining stresses increase from zero to higher levels,the pre-failure behavior changes from linear to nonlinear forms,resulting in an increase in initial stiffness from 2.08 kN/mm to 32.51 kN/mm.The load-displacement curves further illuminate distinct post-failure behavior at elevated levels of confining stresses,characterized by enhanced stiffness.Notably,the peak load capacity ranged from 27.9 kN to 46.5 kN as confining stresses advanced from σ_(2)=σ_(3)=0 to σ_(2)=20 MPa and σ_(3)=10 MPa.Additionally,the outcomes highlight an influence of confining stress on the lateral deformation of samples.Lower levels of confinement prompt overall dilation in lateral deformation,while higher confinements maintain a state of shrinkage.Furthermore,diverse failure modes have been identified,intricately tied to the arrangement of confining stresses.Lower confinements tend to induce a splitting mode of failure,whereas higher loads bring about a shift towards a pure interfacial shear-off and shear-crushed failure mechanism.展开更多
We investigate the inter-well coupling of multiple graphene quantum well structures consisting of graphenesuperlattices with different periodic potentials.The general form of the eigenlevel equation for the bound stat...We investigate the inter-well coupling of multiple graphene quantum well structures consisting of graphenesuperlattices with different periodic potentials.The general form of the eigenlevel equation for the bound states of thequantum well is expressed in terms of the transfer matrix elements.It is found that the electronic transmission exhibitsresonant tunneling peaks at the eigenlevels of the bound states and shifts to the higher energy with increasing the incidentangle.If there are N coupled quantum wells,the resonant modes have N-fold splitting.The peaks of resonant tunnelingcan be controlled by modulating the graphene barriers.展开更多
The beyond-dripline oxygen isotopes^(27,28)O were recently observed at RIKEN,and were found to be unbound decaying into^(24)O by emitting neutrons.The unbound feature of the heaviest oxygen isotope,^(28)O,provides an ...The beyond-dripline oxygen isotopes^(27,28)O were recently observed at RIKEN,and were found to be unbound decaying into^(24)O by emitting neutrons.The unbound feature of the heaviest oxygen isotope,^(28)O,provides an excellent test for stateof-the-art nuclear models.The atomic nucleus is a self-organized quantum manybody system comprising specific numbers of protons Z and neutrons N.展开更多
Point-of-care testing(POCT)is the practice of diagnosing and monitoring diseases where the patient is located,as opposed to traditional treatment conducted solely in a medical laboratory or other clinical setting.POCT...Point-of-care testing(POCT)is the practice of diagnosing and monitoring diseases where the patient is located,as opposed to traditional treatment conducted solely in a medical laboratory or other clinical setting.POCT has been less common in the recent past due to a lack of portable medical devices capable of facilitating effective medical testing.However,recent growth has occurred in this field due to advances in diagnostic technologies,device miniaturization,and progress in wearable electronics.Among these developments,electrochemical sensors have attracted interest in the POCT field due to their high sensitivity,compact size,and affordability.They are used in various applications,from disease diagnosis to health status monitoring.In this paper we explore recent advancements in electrochemical sensors,the methods of fabricating them,and the various types of sensing mechanisms that can be used.Furthermore,we delve into methods for immobilizing specific biorecognition elements,including enzymes,antibodies,and aptamers,onto electrode surfaces and how these sensors are used in real-world POCT settings.展开更多
Knowledge of the mechanical behavior of planetary rocks is indispensable for space explorations.The scarcity of pristine samples and the irregular shapes of planetary meteorites make it difficult to obtain representat...Knowledge of the mechanical behavior of planetary rocks is indispensable for space explorations.The scarcity of pristine samples and the irregular shapes of planetary meteorites make it difficult to obtain representative samples for conventional macroscale rock mechanics experiments(macro-RMEs).This critical review discusses recent advances in microscale RMEs(micro-RMEs)techniques and the upscaling methods for extracting mechanical parameters.Methods of mineralogical and microstructural analyses,along with non-destructive mechanical techniques,have provided new opportunities for studying planetary rocks with unprecedented precision and capabilities.First,we summarize several mainstream methods for obtaining the mineralogy and microstructure of planetary rocks.Then,nondestructive micromechanical testing methods,nanoindentation and atomic force microscopy(AFM),are detailed reviewed,illustrating the principles,advantages,influencing factors,and available testing results from literature.Subsequently,several feasible upscaling methods that bridge the micro-measurements of meteorite pieces to the strength of the intact body are introduced.Finally,the potential applications of planetary rock mechanics research to guiding the design and execution of space missions are environed,ranging from sample return missions and planetary defense to extraterrestrial construction.These discussions are expected to broaden the understanding of the microscale mechanical properties of planetary rocks and their significant role in deep space exploration.展开更多
As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scal...As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scale reinforced concrete(RC)frame structure.Different material pipes and different methods for penetrating the reinforced concrete floors are combined to evaluate the difference in seismic performance.Floor response spectra and pipe acceleration amplification factors based on test data are discussed and compared with code provisions.A seismic fragility study of displacement demand is conducted based on numerical simulation.The acceleration response and displacement response of different combinations are compared.The results show that the combination of different pipe materials and different passing-through methods can cause obvious differences in the seismic response of indoor riser pipes.展开更多
The rock mass consists of rock blocks and structural planes,which can reduce its integrity and strength.Therefore,accurately obtaining the characteristics of the rock mass structural plane is a prerequisite for evalua...The rock mass consists of rock blocks and structural planes,which can reduce its integrity and strength.Therefore,accurately obtaining the characteristics of the rock mass structural plane is a prerequisite for evaluating stability and designing supports in underground engineering.Currently,there are no effective testing methods for the characteristic parameters of the rock mass structural plane in underground engineering.The paper presents the digital drilling technology as a new testing method of rock mass structural planes.Flawed rock specimens with cracks of varying widths and angles were used to simulate the rock mass structural planes,and the multifunctional rock mass digital drilling test system was employed to carry out the digital drilling tests.The analysis focuses on the variation laws of drilling parameters,such as drilling pressure and drilling torque,affected by the characteristics of prefabricated cracks,and clarifies the degradation mechanism of rock equivalent compressive strength.Additionally,an identification model for the characteristic parameters of rock mass structural planes during drilling is established.The test results indicate that the average difference of the characteristics of prefabricated cracks identified by the equivalent compressive strength is 2.45°and 0.82 mm,respectively.The identification model while drilling is verified to be correct due to the high identification accuracy.Based on this,a method for testing the characteristic parameters of the surrounding rock structural plane while drilling is proposed.The research offers a theoretical and methodological foundation for precise in situ identification of structural planes of the surrounding rock in underground engineering.展开更多
基金financial support from PetroChina Innovation Foundation。
文摘In order to overcome the defects that the analysis of multi-well typical curves of shale gas reservoirs is rarely applied to engineering,this study proposes a robust production data analysis method based on deconvolution,which is used for multi-well inter-well interference research.In this study,a multi-well conceptual trilinear seepage model for multi-stage fractured horizontal wells was established,and its Laplace solutions under two different outer boundary conditions were obtained.Then,an improved pressure deconvolution algorithm was used to normalize the scattered production data.Furthermore,the typical curve fitting was carried out using the production data and the seepage model solution.Finally,some reservoir parameters and fracturing parameters were interpreted,and the intensity of inter-well interference was compared.The effectiveness of the method was verified by analyzing the production dynamic data of six shale gas wells in Duvernay area.The results showed that the fitting effect of typical curves was greatly improved due to the mutual restriction between deconvolution calculation parameter debugging and seepage model parameter debugging.Besides,by using the morphological characteristics of the log-log typical curves and the time corresponding to the intersection point of the log-log typical curves of two models under different outer boundary conditions,the strength of the interference between wells on the same well platform was well judged.This work can provide a reference for the optimization of well spacing and hydraulic fracturing measures for shale gas wells.
基金Project supported by the National Natural Science Foundation of China(Nos.11832002 and 12072201)。
文摘The chaotic dynamic snap-through and complex nonlinear vibrations are investigated in a rectangular asymmetric cross-ply bistable composite laminated cantilever shell,in cases of 1:2 inter-well internal resonance and primary resonance.The transverse foundation excitation is applied to the fixed end of the structure,and the other end is in a free state.The first-order approximate multiple scales method is employed to perform the perturbation analysis on the dimensionless two-degree-of-freedom ordinary differential motion control equation.The four-dimensional averaged equations are derived in both polar and rectangular coordinate forms.Deriving from the obtained frequency-amplitude and force-amplitude response curves,a detailed analysis is conducted to examine the impacts of excitation amplitude,damping coefficient,and tuning parameter on the nonlinear internal resonance characteristics of the system.The nonlinear softening characteristic is exhibited in the upper stable-state,while the lower stable-state demonstrates the softening and linearity characteristics.Numerical simulation is carried out using the fourth-order Runge-Kutta method,and a series of nonlinear response curves are plotted.Increasing the excitation amplitude further elucidates the global bifurcation and chaotic dynamic snap-through characteristics of the bistable cantilever shell.
文摘To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concrete T-beams,destructive tests were conducted on full-scale pre-stressed concrete beams.Based on the measurement and ana-lysis of beam deflection,strain,and crack development under various loading levels during the research tests,combined with the verification coefficient indicators specified in the codes,the verification coefficients of bridges at different stages of damage can be examined.The results indicate that the T-beams experience complete,incom-plete linear,and non-linear stages during the destructive test process.In the complete linear elastic stage,both the deflection and bottom strain verification coefficients comply with the specifications,indicating a good structural load-bearing capacity no longer adheres to the code’s requirements.In the non-linear stage,both coefficients exhi-bit a sharp increase,resulting in a further decrease in the structure’s load-bearing capacity.According to the pro-visions of the current code,the beam can be in the incomplete linear stage when both values fall within the code’s specified range.The strain verification coefficient sourced from the compression zone at the bottom of theflange is not recommended for assessing the bridge’s load-bearing capacity.
文摘AIM:To measure the optimal anterior chamber pressure(ACP)for safe phacoemulsification using a new tube chamber system with internal pressure measurement function in the porcine eye.METHODS:The 20-gauge and 21-gauge straight tips with yellow and orange sleeves,respectively,were covered by a test chamber combined with a pressure sensor for measuring ACP.This was measured for 20s from 10s after starting aspiration in the linear mode using vacuum levels of 200 and 150 mm Hg with a 20-gauge tip,and 300 and 250 mm Hg with a 21-gauge tip.Using a porcine eye,a pressure sensor fixed with a 0.9 mm corneal incision measured ACP.For the posterior capsule contact assay,porcine eyes were treated as described above,and the ultrasonic needle tip was held at the height of the iris and aspirated for 30s in linear mode at a vacuum of 200 and 150 mm Hg for the 20-gauge tip,and 300 and 250 mm Hg for the 21-gauge tip.The bottle height at which the posterior capsule accidentally contacted the ultrasonic tip was recorded,and the estimated ACP was calculated.RESULTS:The internal pressure of the new tube chamber system and ACP from the porcine eye closely matched proportional changes at vacuum levels of 200 and 150 mm Hg with 20-gauge tips.Similarly,proportional changes at vacuum levels of 300 and 250 mm Hg with the 21-gauge tip were nearly equal.The bottle height at which the posterior capsule contacted with the tip and estimated ACP were 57.5±12.6 cm(20.2±7.9 mm Hg)at 200 mm Hg with a 20-gauge tip,35.0±10.0 cm(16.6±6.3 mm Hg)at 150 mm Hg with a 20-gauge tip,47.5±12.6 cm(18.7±8.7 mm Hg)at 300 mm Hg with a 21-gauge tip,and 32.5±5.0 cm(15.7±3.5 mm Hg)at 250 mm Hg with a 21-gauge tip.CONCLUSION:A comprehensive understanding of this chamber system’s characteristics and usage can resolve anterior chamber instability caused by changing preoperative settings on the phaco machine.
基金supported by the National Nature Science Foundation of China(Grant No.42207216)the Major Program of the National Natural Science Foundation of China(Grant No.42090055)the National Nature Science Foundation of China(Grant No.42377182).
文摘Understanding the stress distribution derived from monitoring the principal stress(PS)in slopes is of great importance.In this study,a miniature sensor for quantifying the two-dimensional(2D)PS in landslide model tests is proposed.The fundamental principle and design of the sensor are demonstrated.The sensor comprises three earth pressure gages and one gyroscope,with the utilization of three-dimensional(3D)printing technology.The difficulties of installation location during model preparation and sensor rotation during testing can be effectively overcome using this sensor.Two different arrangements of the sensors are tested in verification tests.Additionally,the application of the sensor in an excavated-induced slope model is tested.The results demonstrate that the sensor exhibits commendable performance and achieves a desirable level of accuracy,with a principal stress angle error of±5°in the verification tests.The stress transformation of the slope model,generated by excavation,is demonstrated in the application test by monitoring the two miniature principal stress(MPS)sensors.The sensor has a significant potential for measuring primary stress in landslide model tests and other geotechnical model experiments.
基金funded by the National Natural Science Foundation of China(Grant No.42377195)。
文摘A fault is a geological structure characterized by significant displacement of rock masses along a fault plane within the Earth's crust.The Yunnan Tabaiyi Tunnel intersects multiple fault zones,making tunnel construction in fault-prone areas particularly vulnerable to the effects of fault activity due to the complexities of the surrounding geological environment.To investigate the dynamic response characteristics of tunnel structures under varying surrounding rock conditions,a three-dimensional large-scale shaking table physical model test was conducted.This study also aimed to explore the damage mechanisms associated with the Tabaiyi Tunnel under seismic loading.The results demonstrate that poor quality surrounding rock enhances the seismic response of the tunnel.This effect is primarily attributed to the distribution characteristics of acceleration,dynamic strain,and dynamic soil pressure.A comparison between unidirectional and multi-directional(including vertical)seismic motions reveals that vertical seismic motion has a more significant impact on specific tunnel locations.Specifically,the maximum tensile stress is observed at the arch shoulder,with values ranging from 60 to 100 k Pa.Moreover,NPR(Non-Prestressed Reinforced)anchor cables exhibit a substantial constant resistance effect under low-amplitude seismic waves.However,when the input earthquake amplitude reaches 0.8g,local sliding occurs at the arch shoulder region of the NPR anchor cable.These findings underscore the importance of focusing on seismic mitigation measures in fault zones and reinforcing critical areas,such as the arch shoulders,in practical engineering applications.
基金the financial support from the Fujian Science Foundation for Outstanding Youth(2023J06039)the National Natural Science Foundation of China(Grant No.41977259,U2005205,41972268)the Independent Research Project of Technology Innovation Center for Monitoring and Restoration Engineering of Ecological Fragile Zone in Southeast China(KY-090000-04-2022-019)。
文摘Shotcrete is one of the common solutions for shallow sliding.It works by forming a protective layer with high strength and cementing the loose soil particles on the slope surface to prevent shallow sliding.However,the solidification time of conventional cement paste is long when shotcrete is used to treat cohesionless soil landslide.The idea of reinforcing slope with polyurethane solidified soil(i.e.,mixture of polyurethane and sand)was proposed.Model tests and finite element analysis were carried out to study the effectiveness of the proposed new method on the emergency treatment of cohesionless soil landslide.Surcharge loading on the crest of the slope was applied step by step until landslide was triggered so as to test and compare the stability and bearing capacity of slope models with different conditions.The simulated slope displacements were relatively close to the measured results,and the simulated slope deformation characteristics were in good agreement with the observed phenomena,which verifies the accuracy of the numerical method.Under the condition of surcharge loading on the crest of the slope,the unreinforced slope slid when the surcharge loading exceeded 30 k Pa,which presented a failure mode of local instability and collapse at the shallow layer of slope top.The reinforced slope remained stable even when the surcharge loading reached 48 k Pa.The displacement of the reinforced slope was reduced by more than 95%.Overall,this study verifies the effectiveness of polyurethane in the emergency treatment of cohesionless soil landslide and should have broad application prospects in the field of geological disasters concerning the safety of people's live.
基金supported by the Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences(2023-PT310-04)。
文摘Antimicrobial resistance(AMR)represents a substantial threat to global public health,complicating the treatment of common infections and leading to prolonged illness and escalated healthcare expenses.To effectively combat AMR,timely and accurate detection is crucial for AMR surveillance and individual-based therapy.Phenotypic antibiotic resistance testing(AST)has long been considered the gold standard in clinical applications,serving as the foundation for clinical AMR diagnosis and optimized therapy.It has significantly contributed to ensuring patients′health and the development of novel antimicrobials.Despite advancements in automated culture-based AST technologies,inherent limitations impede the widespread use of phenotypic AST in AMR surveillance.Genotypic AST technologies offer a promising alternative option,exhibiting advantages of rapidity,high sensitivity,and specificity.With the continuous advancement and expanding applications of genotypic AST technologies,such as microfluidics,mass spectrometry,and high-resolution melting curve analysis,new vigor has been injected into the development and clinical implementation of genotypic AST technologies.In this narrative review,we discuss the principles,applications,and advancements of emerging genotypic AST methods in clinical settings.The comprehensive review aims to highlight the significant scientific potential of emerging genotypic AST technologies in clinical AMR diagnosis,providing insights to enhance existing methods and explore novel approaches.
基金Supported by the China National Science and Technology Major Project(2016ZX05014-003-004)
文摘Based on the characteristics of injection-production units in fractured-vuggy carbonate reservoirs,nine groups of experiments were designed and performed to analyze the interference characteristics and their influencing factors during water flooding.Based on percolation theory,an inversion model for simulating waterflooding interferences was proposed to study the influence laws of different factors on interference characteristics.The results show that well spacing,permeability ratio,cave size,and cave location all affect the interference characteristics of water flooding.When the cave is located in high permeability fractures,or in the small well spacing direction,or close to the producer in an injection-production unit,the effects of water flooding are much better.When the large cave is located in the high-permeability or small well spacing direction,the well in the direction with lower permeability or smaller well spacing will see water breakthrough earlier.When the cave is in the higher permeability direction and the reserves between the water injector and producer differ greatly,the conductivity differences in different injection-production directions are favorable for water flooding.When the injection-production well pattern is constructed or recombined,it’s better to make the reserves of caves in different injection-production directions proportional to permeability,and inversely proportional to the well spacing.The well close to the cave should be a producer,and the well far from the cave should be an injector.Different ratios of cave reserves to fracture reserves correspond to different optimal well spacings and optimal permeability ratios.Moreover,both optimal well spacing and optimal permeability ratio increase as the ratio of cave reserves to fracture reserves increases.
文摘Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic stress conditions.Under these conditions,it is assumed that the intermediate principal stress(σ_(2))equals the minimum principal stress(σ_(3)).This assumption overlooks the potential variations in magnitudes of in situ stress conditions along all three directions near an underground opening where a rock bolt is installed.In this study,a series of push tests was meticulously conducted under triaxial conditions.These tests involved applying non-uniform confining stresses(σ_(2)≠σ_(3))to cubic specimens,aiming to unveil the previously overlooked influence of intermediate principal stresses on the strength properties of rock bolts.The results show that as the confining stresses increase from zero to higher levels,the pre-failure behavior changes from linear to nonlinear forms,resulting in an increase in initial stiffness from 2.08 kN/mm to 32.51 kN/mm.The load-displacement curves further illuminate distinct post-failure behavior at elevated levels of confining stresses,characterized by enhanced stiffness.Notably,the peak load capacity ranged from 27.9 kN to 46.5 kN as confining stresses advanced from σ_(2)=σ_(3)=0 to σ_(2)=20 MPa and σ_(3)=10 MPa.Additionally,the outcomes highlight an influence of confining stress on the lateral deformation of samples.Lower levels of confinement prompt overall dilation in lateral deformation,while higher confinements maintain a state of shrinkage.Furthermore,diverse failure modes have been identified,intricately tied to the arrangement of confining stresses.Lower confinements tend to induce a splitting mode of failure,whereas higher loads bring about a shift towards a pure interfacial shear-off and shear-crushed failure mechanism.
基金Supported by the National Natural Science Foundation of China under Grant No. 10832005the Program for Changjiang Scholars and Innovative Research Team in University under Grant No. IRT0730+1 种基金Program for International S & T Cooperation Program of China under Grant No. 2009DFA02320Doctoral Research Foundation of Nanchang University under Grant No. 300715
文摘We investigate the inter-well coupling of multiple graphene quantum well structures consisting of graphenesuperlattices with different periodic potentials.The general form of the eigenlevel equation for the bound states of thequantum well is expressed in terms of the transfer matrix elements.It is found that the electronic transmission exhibitsresonant tunneling peaks at the eigenlevels of the bound states and shifts to the higher energy with increasing the incidentangle.If there are N coupled quantum wells,the resonant modes have N-fold splitting.The peaks of resonant tunnelingcan be controlled by modulating the graphene barriers.
基金This work was supported by the National Natural Science Foundation of China(Nos.12335007,11835001,11921006,12035001 and 12205340)the State Key Laboratory of Nuclear Physics and Technology,Peking University(No.NPT2020KFY13)Gansu Natural Science Foundation(No.22JR5RA123).
文摘The beyond-dripline oxygen isotopes^(27,28)O were recently observed at RIKEN,and were found to be unbound decaying into^(24)O by emitting neutrons.The unbound feature of the heaviest oxygen isotope,^(28)O,provides an excellent test for stateof-the-art nuclear models.The atomic nucleus is a self-organized quantum manybody system comprising specific numbers of protons Z and neutrons N.
基金supported by the National Research Foundation of Korea(No.2021R1A2B5B03001691).
文摘Point-of-care testing(POCT)is the practice of diagnosing and monitoring diseases where the patient is located,as opposed to traditional treatment conducted solely in a medical laboratory or other clinical setting.POCT has been less common in the recent past due to a lack of portable medical devices capable of facilitating effective medical testing.However,recent growth has occurred in this field due to advances in diagnostic technologies,device miniaturization,and progress in wearable electronics.Among these developments,electrochemical sensors have attracted interest in the POCT field due to their high sensitivity,compact size,and affordability.They are used in various applications,from disease diagnosis to health status monitoring.In this paper we explore recent advancements in electrochemical sensors,the methods of fabricating them,and the various types of sensing mechanisms that can be used.Furthermore,we delve into methods for immobilizing specific biorecognition elements,including enzymes,antibodies,and aptamers,onto electrode surfaces and how these sensors are used in real-world POCT settings.
基金supported by China Postdoctoral Science Foundation(No.2023TQ0247)Shenzhen Science and Technology Program(No.JCYJ20220530140602005)+2 种基金the Fundamental Research Funds for the Central Universities(No.2042023kfyq03)Guangdong Basic and Applied Basic Research Foundation(No.2023A1515111071)the Postdoctoral Fellowship Program(Grade B)of China Postdoctoral Science Foundation(No.GZB20230544).
文摘Knowledge of the mechanical behavior of planetary rocks is indispensable for space explorations.The scarcity of pristine samples and the irregular shapes of planetary meteorites make it difficult to obtain representative samples for conventional macroscale rock mechanics experiments(macro-RMEs).This critical review discusses recent advances in microscale RMEs(micro-RMEs)techniques and the upscaling methods for extracting mechanical parameters.Methods of mineralogical and microstructural analyses,along with non-destructive mechanical techniques,have provided new opportunities for studying planetary rocks with unprecedented precision and capabilities.First,we summarize several mainstream methods for obtaining the mineralogy and microstructure of planetary rocks.Then,nondestructive micromechanical testing methods,nanoindentation and atomic force microscopy(AFM),are detailed reviewed,illustrating the principles,advantages,influencing factors,and available testing results from literature.Subsequently,several feasible upscaling methods that bridge the micro-measurements of meteorite pieces to the strength of the intact body are introduced.Finally,the potential applications of planetary rock mechanics research to guiding the design and execution of space missions are environed,ranging from sample return missions and planetary defense to extraterrestrial construction.These discussions are expected to broaden the understanding of the microscale mechanical properties of planetary rocks and their significant role in deep space exploration.
基金Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant Nos.2021EEEVL0204 and 2018A02。
文摘As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scale reinforced concrete(RC)frame structure.Different material pipes and different methods for penetrating the reinforced concrete floors are combined to evaluate the difference in seismic performance.Floor response spectra and pipe acceleration amplification factors based on test data are discussed and compared with code provisions.A seismic fragility study of displacement demand is conducted based on numerical simulation.The acceleration response and displacement response of different combinations are compared.The results show that the combination of different pipe materials and different passing-through methods can cause obvious differences in the seismic response of indoor riser pipes.
基金supported by the National Key Research and Development Program of China(Grant No.2023YFC2907600)the National Natural Science Foundation of China(Grant Nos.42277174 and 52204260).
文摘The rock mass consists of rock blocks and structural planes,which can reduce its integrity and strength.Therefore,accurately obtaining the characteristics of the rock mass structural plane is a prerequisite for evaluating stability and designing supports in underground engineering.Currently,there are no effective testing methods for the characteristic parameters of the rock mass structural plane in underground engineering.The paper presents the digital drilling technology as a new testing method of rock mass structural planes.Flawed rock specimens with cracks of varying widths and angles were used to simulate the rock mass structural planes,and the multifunctional rock mass digital drilling test system was employed to carry out the digital drilling tests.The analysis focuses on the variation laws of drilling parameters,such as drilling pressure and drilling torque,affected by the characteristics of prefabricated cracks,and clarifies the degradation mechanism of rock equivalent compressive strength.Additionally,an identification model for the characteristic parameters of rock mass structural planes during drilling is established.The test results indicate that the average difference of the characteristics of prefabricated cracks identified by the equivalent compressive strength is 2.45°and 0.82 mm,respectively.The identification model while drilling is verified to be correct due to the high identification accuracy.Based on this,a method for testing the characteristic parameters of the surrounding rock structural plane while drilling is proposed.The research offers a theoretical and methodological foundation for precise in situ identification of structural planes of the surrounding rock in underground engineering.