On the basis of local measurements of hydraulic conductivity, geostatistical methods have been found to be useful in heterogeneity characterization of a hydraulic conductivity field on a regional scale. However, the m...On the basis of local measurements of hydraulic conductivity, geostatistical methods have been found to be useful in heterogeneity characterization of a hydraulic conductivity field on a regional scale. However, the methods are not suited to directly integrate dynamic production data, such as, hydraulic head and solute concentration, into the study of conductivity distribution. These data, which record the flow and transport processes in the medium, are closely related to the spatial distribution of hydraulic conductivity. In this study, a three-dimensional gradient-based inverse method--the sequential self-calibration (SSC) method--is developed to calibrate a hydraulic conductivity field, initially generated by a geostatistical simulation method, conditioned on tracer test results. The SSC method can honor both local hydraulic conductivity measurements and tracer test data. The mismatch between the simulated hydraulic conductivity field and the reference true one, measured by its mean square error (MSE), is reduced through the SSC conditional study. In comparison with the unconditional results, the SSC conditional study creates the mean breakthrough curve much closer to the reference true curve, and significantly reduces the prediction uncertainty of the solute transport in the observed locations. Further, the reduction of uncertainty is spatially dependent, which indicates that good locations, geological structure, and boundary conditions will affect the efficiency of the SSC study results.展开更多
The effectiveness of an injection-based remediation strategy is primarily governed by accurate understanding of reagent delivery and ensuring uniform distribution within the reactive zone. In IRZ (in situ reactive z...The effectiveness of an injection-based remediation strategy is primarily governed by accurate understanding of reagent delivery and ensuring uniform distribution within the reactive zone. In IRZ (in situ reactive zone) design, the required reagent strength, injection volumes, injection rates, injection frequency, injection and monitoring well spacing, and the cost and time to achieve remediation goals are governed by the hydrogeology of the site. A properly designed tracer test is capable of providing critical above mentioned site-specific information, to assist with full scale design of an IRZ. This paper describes that implementing tracer testing to support remedial design can result in enhanced design efficiency, added assurance in full-scale implementation and ultimately resulted in substantial cost savings. Therefore, it is recommended that the broader practitioner community adopt this technique as a best practice for effective and optimum in situ remediation system design.展开更多
This paper focuses on the study of the evolutionary mechanism governing the temperature field of geothermal reservoir under low-temperature tailwater reinjection conditions,which is crucial for the sustainable geother...This paper focuses on the study of the evolutionary mechanism governing the temperature field of geothermal reservoir under low-temperature tailwater reinjection conditions,which is crucial for the sustainable geothermal energy management.With advancing exploitation of geothermal resources deepens,precise understanding of this mechanism becomes paramount for devising effective reinjection strategies,optimizing reservoir utilization,and bolstering the economic viability of geothermal energy development.The article presents a comprehensive review of temperature field evolution across diverse heterogeneous thermal reservoirs under low-temperature tailwater reinjection conditions,and analyzes key factors influ-encing this evolution.It evaluates existing research methods,highlighting their strengths and limitations.The study identifies gaps in the application of rock seepage and heat transfer theories on a large scale,alongside the need for enhanced accuracy in field test results,particularly regarding computational effi-ciency of fractured thermal reservoir models under multi-well reinjection conditions.To address these shortcomings,the study proposes conducting large-scale rock seepage and heat transfer experiments,coupled with multi-tracer techniques for field testing,aimed at optimizing fractured thermal reservoir models'computational efficiency under multi-well reinjection conditions.Additionally,it suggests integrat-ing deep learning methods into research endeavors.These initiatives are of significance in deepening the understanding of the evolution process of the temperature field in deep thermal reservoirs and enhancing the sustainability of deep geothermal resource development.展开更多
Objectives: The study compared cardiac scintigraphy stress scanning practices applied in a National Maltese Nuclear Medicine centre and in international centres. This was achieved through the design of an online surve...Objectives: The study compared cardiac scintigraphy stress scanning practices applied in a National Maltese Nuclear Medicine centre and in international centres. This was achieved through the design of an online survey which investigated participant knowledge of stress testing, and current procedural practice. Methods: An online survey comprising 12 questions was prepared using Survey Monkey. Professional Nuclear Medicine groups such as the Medical-Physics-Engineering community and Virtual Radiopharmacy were targeted. Access to the survey remained open for eight months during which a periodic reminder was sent to optimise the response rate. Forty-three members responded from across Europe and Australasia. Chi-square tests and comparisons between multiple responses using IBM SPSS 20 were used to evaluate the results. Information related to Maltese practice was collated separately for review and comparative purposes. Results: The online survey participants comprised United Kingdom [72%], other European countries [18%] and Australasia [9%]. The majority of respondents [n = 39] reported pharmacological stress testing as being performed either alone or in conjunction with exercise stress testing as the preferred option. Most participants [60%] were aware of local stress test protocols but had limited knowledge in relation to guidelines designed for cases where patients were not suitable for pharmacological stress testing. Conclusion: The survey provided information about procedures within participating centres for scintigraphic cardiac stress scanning. Differences were identified with regards to the preferred radiopharmaceutical tracers and procedural protocols. Further investigation of examination techniques is warranted, with the aim of increasing standardisation of protocol compliance and the application of more suitable practice.展开更多
By the end of 2002, there are about 219 production wells (including 12 reinjection wells) in Tianjin. The annual production rate is 1.5×10 7 m 3 and the reinjection rate is 1.66×10 6 m 3. The main side effec...By the end of 2002, there are about 219 production wells (including 12 reinjection wells) in Tianjin. The annual production rate is 1.5×10 7 m 3 and the reinjection rate is 1.66×10 6 m 3. The main side effect anticipated from reinjection is the cooling of the reservoir. It is necessary to estimate the thermal breakthrough time in different distances between injection production wells. This paper describes the 2 D mass and heat transfer in the heterogeneous fractured rocks. The equations that arise for each grid block must be linearized. The main reinjection model is simulated by a program of the TOUGH2 to analyze the change of the temperature field and predict the pressure and heat break through. The tracer test is very important for understanding the transportation pathway and transport channel/space in the doublet system, and estimating the possible cooling resulted from the injection processes.展开更多
基金This study is partially supported by the Program of Outstanding Overseas Youth Chinese Scholar,the National Natural Science Foundation of China (No. 40528003)partially supported by USA National Science Foundation.
文摘On the basis of local measurements of hydraulic conductivity, geostatistical methods have been found to be useful in heterogeneity characterization of a hydraulic conductivity field on a regional scale. However, the methods are not suited to directly integrate dynamic production data, such as, hydraulic head and solute concentration, into the study of conductivity distribution. These data, which record the flow and transport processes in the medium, are closely related to the spatial distribution of hydraulic conductivity. In this study, a three-dimensional gradient-based inverse method--the sequential self-calibration (SSC) method--is developed to calibrate a hydraulic conductivity field, initially generated by a geostatistical simulation method, conditioned on tracer test results. The SSC method can honor both local hydraulic conductivity measurements and tracer test data. The mismatch between the simulated hydraulic conductivity field and the reference true one, measured by its mean square error (MSE), is reduced through the SSC conditional study. In comparison with the unconditional results, the SSC conditional study creates the mean breakthrough curve much closer to the reference true curve, and significantly reduces the prediction uncertainty of the solute transport in the observed locations. Further, the reduction of uncertainty is spatially dependent, which indicates that good locations, geological structure, and boundary conditions will affect the efficiency of the SSC study results.
文摘The effectiveness of an injection-based remediation strategy is primarily governed by accurate understanding of reagent delivery and ensuring uniform distribution within the reactive zone. In IRZ (in situ reactive zone) design, the required reagent strength, injection volumes, injection rates, injection frequency, injection and monitoring well spacing, and the cost and time to achieve remediation goals are governed by the hydrogeology of the site. A properly designed tracer test is capable of providing critical above mentioned site-specific information, to assist with full scale design of an IRZ. This paper describes that implementing tracer testing to support remedial design can result in enhanced design efficiency, added assurance in full-scale implementation and ultimately resulted in substantial cost savings. Therefore, it is recommended that the broader practitioner community adopt this technique as a best practice for effective and optimum in situ remediation system design.
基金funded by the National Nature Science Foundation of China(No.42272350)Scientific research project of Hunan Institute of Geology(No.HNGSTP202211)+2 种基金Hunan Province key research and development project(No.2022SK2070)Geological survey project of Department of Natural Resources of Shanxi Province(No.Jinfencai[2021-0009]G009-C05)the Foundation of Shanxi Key Laboratory for Exploration and Exploitation of Geothermal Resources(No.SX202202).
文摘This paper focuses on the study of the evolutionary mechanism governing the temperature field of geothermal reservoir under low-temperature tailwater reinjection conditions,which is crucial for the sustainable geothermal energy management.With advancing exploitation of geothermal resources deepens,precise understanding of this mechanism becomes paramount for devising effective reinjection strategies,optimizing reservoir utilization,and bolstering the economic viability of geothermal energy development.The article presents a comprehensive review of temperature field evolution across diverse heterogeneous thermal reservoirs under low-temperature tailwater reinjection conditions,and analyzes key factors influ-encing this evolution.It evaluates existing research methods,highlighting their strengths and limitations.The study identifies gaps in the application of rock seepage and heat transfer theories on a large scale,alongside the need for enhanced accuracy in field test results,particularly regarding computational effi-ciency of fractured thermal reservoir models under multi-well reinjection conditions.To address these shortcomings,the study proposes conducting large-scale rock seepage and heat transfer experiments,coupled with multi-tracer techniques for field testing,aimed at optimizing fractured thermal reservoir models'computational efficiency under multi-well reinjection conditions.Additionally,it suggests integrat-ing deep learning methods into research endeavors.These initiatives are of significance in deepening the understanding of the evolution process of the temperature field in deep thermal reservoirs and enhancing the sustainability of deep geothermal resource development.
文摘Objectives: The study compared cardiac scintigraphy stress scanning practices applied in a National Maltese Nuclear Medicine centre and in international centres. This was achieved through the design of an online survey which investigated participant knowledge of stress testing, and current procedural practice. Methods: An online survey comprising 12 questions was prepared using Survey Monkey. Professional Nuclear Medicine groups such as the Medical-Physics-Engineering community and Virtual Radiopharmacy were targeted. Access to the survey remained open for eight months during which a periodic reminder was sent to optimise the response rate. Forty-three members responded from across Europe and Australasia. Chi-square tests and comparisons between multiple responses using IBM SPSS 20 were used to evaluate the results. Information related to Maltese practice was collated separately for review and comparative purposes. Results: The online survey participants comprised United Kingdom [72%], other European countries [18%] and Australasia [9%]. The majority of respondents [n = 39] reported pharmacological stress testing as being performed either alone or in conjunction with exercise stress testing as the preferred option. Most participants [60%] were aware of local stress test protocols but had limited knowledge in relation to guidelines designed for cases where patients were not suitable for pharmacological stress testing. Conclusion: The survey provided information about procedures within participating centres for scintigraphic cardiac stress scanning. Differences were identified with regards to the preferred radiopharmaceutical tracers and procedural protocols. Further investigation of examination techniques is warranted, with the aim of increasing standardisation of protocol compliance and the application of more suitable practice.
文摘By the end of 2002, there are about 219 production wells (including 12 reinjection wells) in Tianjin. The annual production rate is 1.5×10 7 m 3 and the reinjection rate is 1.66×10 6 m 3. The main side effect anticipated from reinjection is the cooling of the reservoir. It is necessary to estimate the thermal breakthrough time in different distances between injection production wells. This paper describes the 2 D mass and heat transfer in the heterogeneous fractured rocks. The equations that arise for each grid block must be linearized. The main reinjection model is simulated by a program of the TOUGH2 to analyze the change of the temperature field and predict the pressure and heat break through. The tracer test is very important for understanding the transportation pathway and transport channel/space in the doublet system, and estimating the possible cooling resulted from the injection processes.