The Kandi basin is located in northeast Benin (West Africa). This study is focused on the estimation of water fluxes exchanged between the river Niger (and its tributaries) and the transboundary Iullemeden Aquifer Sys...The Kandi basin is located in northeast Benin (West Africa). This study is focused on the estimation of water fluxes exchanged between the river Niger (and its tributaries) and the transboundary Iullemeden Aquifer System. In that framework, an innovative approach based on the application of the Bayesian Mixing Model (MixSIAR) analysis on water isotopes (oxygen-18, deuterium and tritium) was performed. Moreover, to assess the relevance of the model outputs, Pearson’s correlation and Principal Component Analysis (PCA) have been done. A complex relationship between surface water and groundwater has been found. Sixty percent (60%) of groundwater samples are made of more than 70% river water and rainwater;while 31.25% of surface water samples are made of about 84% groundwater. To safeguard sustainable water resources for the well-being of the local communities, surface water and groundwater must be managed as a unique component in the Kandi basin.展开更多
Subterranean estuaries(STEs)are characterized by the mixing of terrestrial fresh groundwater and seawater in coastal aquifers.Although microorganisms are important components of coastal groundwater ecosystems and play...Subterranean estuaries(STEs)are characterized by the mixing of terrestrial fresh groundwater and seawater in coastal aquifers.Although microorganisms are important components of coastal groundwater ecosystems and play critical roles in biogeochemical transformations in STEs,limited information is available about how their community dynamics interact with hydrological,geochemical and environmental characteristics in STEs.Here,we studied bacterial and archaeal diversities and distributions with 16S rRNA-based Illumina MiSeq sequencing technology between surface water and groundwater in a karstic STE.Principal-coordinate analysis found that the bacterial and archaeal communities in the areas where algal blooms occurred were significantly separated from those in other stations without algal bloom occurrence.Canonical correspondence analysis showed that nutrients and salinity can explain the patterns of bacterial and archaeal community dynamics.The results suggest that hydrological,geochemical and environmental characteristics between surface water and groundwater likely control the bacterial and archaeal diversities and distributions in STEs.Furthermore,we found that some key species can utilize terrestrial pollutants such as nitrate and ammonia in STEs,indicating that these species(e.g.,Nitrosopumilus maritimus,Limnohabitans parvus and Simplicispira limi)may be excellent candidates for in situ degradation/remediation of coastal groundwater contaminations concerned with the nitrate and ammonia.Overall,this study reveals the coupling relationship between the microbial communities and hydrochemical environments in STEs,and provides a perspective of in situ degradation/remediation for coastal groundwater quality management.展开更多
The Berg River Catchment based in the Western Cape Province,South Africa services the greater Cape Town area with water,subsequent to supplying the vast agricultural activities that exist in the middle and the lower r...The Berg River Catchment based in the Western Cape Province,South Africa services the greater Cape Town area with water,subsequent to supplying the vast agricultural activities that exist in the middle and the lower reaches.This study thus investigates the hydrogeochemical interactions between surface and groundwater in the Berg River Catchment with the aim of establishing trends and transfer of constituents between the surface and groundwater systems,investigates the role that geology plays in water chemistry as well as identifies the geochemical processes controlling surface and groundwater chemistry in the catchment.This study was carried out using three types of research designs namely i)experimental research design;ii)field research design and meta-analysis research design.Furthermore,the study made use of hydrochemical data ranging from 2003 to 2013 obtained from the National Water Monitoring Database owned and maintained by the Department of Water and Sanitation and data that were sampled in 2016 by authors and analyzed using the ICP-MS Technique Ground Water Chart,Arc-GIS and Geosoft(Oasis Montaj)were further employed to model the data.The results indicated that:i)in the Upper Berg there is not much interaction and transfer of constituents between surface and groundwater;ii)the Middle Berg,however,indicated a degree of interaction with the sharing of constituents between the two water systems and iii)the Lower Berg indicated only NaCl water type also noting that the area situated near the river mouth whereby there is the mixing of river and seawater.展开更多
Understanding the interaction between groundwater and surface water in permafrost regions is essential to study flood frequencies and river water quality, especially in the high latitude/altitude basins. The applicati...Understanding the interaction between groundwater and surface water in permafrost regions is essential to study flood frequencies and river water quality, especially in the high latitude/altitude basins. The application of heat tracing method,based on oscillating streambed temperature signals, is a promising geophysical method for identifying and quantifying the interaction between groundwater and surface water. Analytical analysis based on a one-dimensional convective-conductive heat transport equation combined with the fiber-optic distributed temperature sensing method was applied on a streambed of a mountainous permafrost region in the Yeniugou Basin, located in the upper Heihe River on the northern Tibetan Plateau. The results indicated that low connectivity existed between the stream and groundwater in permafrost regions.The interaction between surface water and groundwater increased with the thawing of the active layer. This study demonstrates that the heat tracing method can be applied to study surface water-groundwater interaction over temporal and spatial scales in permafrost regions.展开更多
The δ<sup>18</sup>O and δ<sup>2</sup>H stable isotope techniques for studying properties of groundwater and surface help us to understand more clearly about the distribution and movement of g...The δ<sup>18</sup>O and δ<sup>2</sup>H stable isotope techniques for studying properties of groundwater and surface help us to understand more clearly about the distribution and movement of groundwater in the South of Hanoi area. There were 68 water samples from the studying area and analyzed by a Liquid Water Isotope Analyzer (LWIA-24D). The stable isotope values of the groundwater from Pleistocene aquifers were range from -3.21‰ to -9.55‰ δ<sup>18</sup>O and -35.32‰ to -67.44‰ δ<sup>2</sup>H;rainwater from -8.18‰ to -4.13‰ δ18O and -61.19‰ to -17.93‰ δ<sup>2</sup>H;Red river water from -7.51‰ to -5.29‰ δ<sup>18</sup>O and -51.60‰ to -38.99‰ δ<sup>2</sup>H. Based on stable isotope characteristics, the results show that there was a relationship between surface water and groundwater in the South of Hanoi city. It is that groundwater recharges for river water in the dry season with 74%, and in the rainfall season groundwater is recharged from river with 87%.展开更多
Arsenic,barium,bismuth,cadmium,cesium,chromium,cobalt,copper,iron,lead,manganese,molybdenum,nickel,strontium,thallium,tungsten,uranium,vanadium,and zinc concentrations were investigated in forty-two groundwater sample...Arsenic,barium,bismuth,cadmium,cesium,chromium,cobalt,copper,iron,lead,manganese,molybdenum,nickel,strontium,thallium,tungsten,uranium,vanadium,and zinc concentrations were investigated in forty-two groundwater samples,twenty-four surface water and six surface sediment samples in Kinsevere industrial zone and its surroundings in February and march 2017,January,February and March 2018 to evaluate the potential human health risk.Chemical analyses were carried out by using ICP-SF-MS(Inductively Coupled Plasma-Sector Field Mass Spectrometry,Thermo Scientific Element II).The trace metals were detected at various concentrations in all the analyzed samples.Pb,Mn and Fe concentrations exceeded the European Union acceptable maximum limits for water intended for human consumption in 4.76%,28.57%and 61.90%of the groundwater samples,respectively and in 0%,50%and 100%of the surface water samples,respectively.As,Cr,Cu and Ni concentrations exceeded the recommended lower sediment quality guideline values in 33.33%,50%,83.33%and 83.33%of the surface sediment samples,respectively.All those elevated trace metal concentrations in the groundwater,surface water and sediments represent a risk for the health of local population as well as for aquatic organisms.展开更多
Drinking water supplies in Ulaanbaatar, the capital of Mongolia, are completely dependent on groundwater sourced from pumping wells located in an alluvial plain of the Tuul River which flows through Ulaanbaatar. The i...Drinking water supplies in Ulaanbaatar, the capital of Mongolia, are completely dependent on groundwater sourced from pumping wells located in an alluvial plain of the Tuul River which flows through Ulaanbaatar. The interaction between groundwater in the alluvial plain and river surface water was investigated using a hydrological and multi-tracers approach. The observed groundwater contour map clearly shows that the Tuul River recharges the floodplain groundwater and groundwater flows from east to west. The similarity of chemical and stable isotopic compositions suggests that groundwater is mainly recharged by Tuul River water in the vicinity of the river. In addition, considering groundwater contours and chemical composition, groundwater in the northern and southern mountain sides contribute to floodplain groundwater. Stable isotopic information suggests that winter season precipita- tion also contributes to the groundwater, because groundwater in a specific region has a considerably lower isotopic ratio. Using the End Member Mixing Analysis applying oxygen-18, SiO2 and HCO3 as tracers, the contribution ratios of the Tuul River, groundwater in the northem and southern mountain regions, and winter season precipitation to floodplain groundwater are esti- mated to be 58% to 85%, 1% to 54%, 0% to 16%, and 0% to 12%, respectively.展开更多
According to the measured groundwater pollution concentration at two monitoring sections of Gusong River coast,adopting progressive dislocation correlation analysis method,correlation between surface water of Gusong R...According to the measured groundwater pollution concentration at two monitoring sections of Gusong River coast,adopting progressive dislocation correlation analysis method,correlation between surface water of Gusong River and groundwater pollution was analyzed.Result showed that propagation time of pollutant between river water and groundwater was longer.According to the water level observation data,river water level was&gt;1 m higher than groundwater table.The groundwater infiltration parameter was determined through the field permeability test data.The Dupuit formula was used to calculate recharge and discharge relationship between river surface water and groundwater.It was obtained that the daily average recharge capacity of right-bank river water to groundwater was 3 m3,and pollution of river surface water had very small influence on groundwater.Using MATLAB software for data analysis and processing,regression equation was established.The chloride as correlation analysis example,results showed that groundwater chloride had the maximum correlation with observation well distance,and correlation with time and monitoring value of surface water was very small.The linear relationship between surface water and groundwater was not obvious.展开更多
The hydrochemical composition of surface water and groundwater is a key parameter for understanding the evolution of water and its quality.In particular,little is known about the impact of transferred water on surface...The hydrochemical composition of surface water and groundwater is a key parameter for understanding the evolution of water and its quality.In particular,little is known about the impact of transferred water on surface water and groundwater.In this study,Baiyangdian Lake was selected as a typical area for extensive groundwater exploration and surface water transfer in the North China Plain.Surface water and groundwater samples were sampled in dry/wet seasons and then analyzed before/after the water transfer,respectively.Generally,surface water and groundwater are extensively hydrologically connected based on hydrochemical evidence.It was found that the hydrochemical composition of the shallow groundwater is affected by the surface water and that the water quality of the deep groundwater is stable.However,inter-aquifer recharge processes from the shallow groundwater to the deep groundwater existed in the anthropogenic region impacted with high nitrate-ion concentrations.Also,the hydrochemical composition of the surface water and groundwater was dominated by rock-weathering and evaporation-precipitation processes.Due to the existence of the deep vadose zone in the alluvial fan,Na^(+)was exchanged into soil matrices during the leakage of the surface water.In addition,the transferred water resulted in surface water with good quality,and it also played as an important recharge source to groundwater.As the most important water resource for irrigation and drinking,deep groundwater should be paid more attention in the alluvial fan with frequent water transfer and extensive groundwater exploration.展开更多
Based on the observation of a complete hydrological year from June 2014 to May 2015, the temporal and spatial variations of the main inorganic nitrogen (MIN, referring to NO3^--N, NO2^--N, NH4^+-N) in surface water an...Based on the observation of a complete hydrological year from June 2014 to May 2015, the temporal and spatial variations of the main inorganic nitrogen (MIN, referring to NO3^--N, NO2^--N, NH4^+-N) in surface water and groundwater of the Li River and the Yuan River wetland succession zones are analyzed. The Li River and the Yuan River are located in agricultural and non-agricultural areas, and this study focus on the influence of surface water level and groundwater depth and precipitation on nitrogen pollution. The results show that NO3^--N in surface water accounts for 70%-90% of MIN, but it does not exceed the limit of national drinking water surface water standard. Groundwater is seriously polluted by NH4^+-N.Based on the groundwater quality standard of NH4^+-N, the groundwater quality in the Li River exceeds Class III water standard throughout the year, and the exceeding months' proportion of Yuan River reaches 58.3%. Compared with the Yuan River, MIN in groundwater of the Li River shows significant temporal and spatial variations owing to the influence of agricultural fertilization. The correlation between the concentrations of MIN and surface water level is poor, while the fitting effect of quadratic correlation between NH4^+-N concentration and groundwater depth is the best (R^2=0.9384), NO3^--N is the next (R^2=0.5128), NO2^--N is the worst (R^2=0.2798). The equation of meteoric water line is δD =7.83δ^18O+12.21, indicating that both surface water and groundwater come from atmospheric precipitation. Surface infiltration is the main cause of groundwater NH4^+-N pollution. Rainfall infiltration in non-fertilization seasons reduces groundwater nitrogen pollution, while rainfall leaching farming and fertilization aggravate groundwater nitrogen pollution.展开更多
Water-rock interaction and groundwater mixing are important phenomena in understanding hydrogeological systems and the stability of rock slopes especially those consisting largely of moderately watersoluble minerals l...Water-rock interaction and groundwater mixing are important phenomena in understanding hydrogeological systems and the stability of rock slopes especially those consisting largely of moderately watersoluble minerals like calcite. In this study, the hydrogeological and geochemical evolutions of groundwater in a limestone quarry composed of three strata: limestone layer(covering), interbedded layer under the covering layer, and slaty greenstone layer(basement) were investigated. Water-rock interaction in the open-pit limestone quarry was evaluated using PHREEQC, while hierarchical cluster analysis(HCA)and principal component analysis(PCA) were used to classify and identify water sources responsible for possible groundwater mixing within rock layers. In addition, Geochemist's Workbench was applied to estimate the mixing fractions to clarify sensitive zones that may affect rock slope stability. The results showed that the changes in Ca2+and HCO3àconcentrations of several groundwater samples along the interbedded layer could be attributed to mixing groundwater from the limestone layer and that from slaty greenstone layer. Based on the HCA and PCA results, groundwaters were classified into several types depending on their origin:(1) groundwater from the limestone layer(LO),(2) mixed groundwater flowing along the interbedded layer(e.g., groundwater samples L-7, L-11, S-3 and S-4), and(3) groundwater originating from the slaty greenstone layer(SO). The mixing fractions of 41% LO: 59% SO, 64% LO: 36% SO, 43%LO: 57% SOand 25% LO: 75% SOon the normal days corresponded to groundwaters L-7, L-11, S-3 and S-4,respectively, while the mixing fractions of groundwaters L-7 and L-11(61% LO: 39% SOand 93% LO: 7% SO,respectively) on rainy days became the majority of groundwater originating from the limestone layer.These indicate that groundwater along the interbedded layer significantly affected the stability of rock slopes by enlarging multi-breaking zones in the layer through calcite dissolution and inducing high water pressure, tension cracks and potential sliding plane along this layer particularly during intense rainfall episodes.展开更多
An assessment on the concentration of surfactants and pesticides of chlorinated hydrocarbon group in surface and groundwater, is made from Greater Kolkata located in the Western Ganga Delta, one of the largest urban a...An assessment on the concentration of surfactants and pesticides of chlorinated hydrocarbon group in surface and groundwater, is made from Greater Kolkata located in the Western Ganga Delta, one of the largest urban agglomerate in Asia. Concentration of both anionic synthetic detergents and organochlorine pesticide resi-dues analysed from 54 and 19 sampling stations covering groundwater and surface water sources respec-tively, are generally found to be within the tolerance limit for human consumption. The concentration of synthetic detergent ranges from 0.084 to 0.425mg/l. Residues of organochlorine pesticides are analysed from different sources like tanks, lakes, rivers and groundwater. Lindane (0.01-0.43μg/l) and DDT (0.03-0.65 μg/l) are the most widely detected pesticide residues. Howerer, the two have not exceeded the limits for drinking anywhere. High value of aldrin and dieldrin (0.9μg/l) is obtained in the river Hugli at Barakpur-Seoraphuli, 20 km north of Kolkata. Likewise high value of Heptachloreis detected in a canal water sample at Palta (0.05 μg/l), a suburban area. Seasonally, the pesticide concentration in surface water is maximum during winter due to their higher application and minimum during monsoon. In groundwater, however, this relationship is reverse due to higher infiltration of surface water during monsoon.展开更多
The study aims to identify a suitable site for open and bore well in a farmhouseusing ground magnetic survey in south India.It also aims to define depth to granitoid and structural elements which traverse the selected...The study aims to identify a suitable site for open and bore well in a farmhouseusing ground magnetic survey in south India.It also aims to define depth to granitoid and structural elements which traverse the selected area.Magnetic data(n=84)measured,processed and interpreted as qualitative and quantitatively.The results of total magnetic intensities indicate that the area is composed of linear magnetic lows trending NE-SW direction and circular to semi-circular causative bodies.The magnetic values ranged from-137 nT to 2345 nT with a mean of 465 nT.Reduction to equator shows significant shifting of causative bodies in the southern and northern directions.Analytical signal map shows exact boundary of granitic bodies.Cosine directional filter has brought out structural element trending NE-SW direction.Results of individual profile brought to light structurally weak zone between 90 m and 100 m in all the profile lines.Sudden decrease of magnetic values from 2042 nT to 126 nT noticed in profile line 6 between 20 m and 30 m indicates fault occurrence.Magnetic breaks obtained from these maps were visualized,interpreted and identified two suitable sites for open and bore well.Radially averaged power spectrum estimates depth of shallow and deep sources in 5 m and 50 m,respectively.Euler method has also been applied to estimate depth of granitoid and structural elements using structural indexes 0,1,2,and 3 and found depth ranges from<10 m to>90 m.Study indicates magnetic method is one of the geophysical methods suitable for groundwater exploration and site selection for open and borewells.展开更多
Ergene Basin is one of the most important industrial centers due to the geographical location in Turkey. Uncontrolled and rapidly increasing industrialization brings together a large number of environmental problems i...Ergene Basin is one of the most important industrial centers due to the geographical location in Turkey. Uncontrolled and rapidly increasing industrialization brings together a large number of environmental problems in the basin. In this study, pollution was investigated in the water samples taken at time intervals and different parts of groundwater and surface water resources located within Ergene Basin by methylene blue anionic surfactants (MBAS) analysis method. Turbidity, temperature, pH, electrical conductivity (EC), concentrations of total P and linear alkylbenzene sulfonates (LAS) were simultaneously determined in the investigated water resources. The results were compared with the Turkish Water Pollution Control Regulation specified in the Quality Criteria of the Inland Water Resources according to their class. The total P and LAS concentrations of surface waters are generally higher than groundwater. In terms of LAS concentrations, the groundwater is Ⅰ-Ⅱ class and the surface water is Ⅱ-Ⅳ class.展开更多
The river water and groundwater from Lagbe town in Benin Republic were collected and analyzed for physical, chemical and microbiological parameters. The surface water samples were treated with alum, Moringa oleifera s...The river water and groundwater from Lagbe town in Benin Republic were collected and analyzed for physical, chemical and microbiological parameters. The surface water samples were treated with alum, Moringa oleifera seeds powder and the combination of alum and Moringa oleifera seeds. The jar-test essays were carried out with two water samples at initial turbidities 7.2 NTU and 14.4 NTU. The water samples analyzed are fairly mineralized (conductivity varies between 166 and 687 μS/cm), enough soft and contain the nitrate (104 mg/L for W4 sample). They are greatly polluted by pathogenic microorganisms such as Escherichia coli, Klebsiella, Enterococcus, Vibrio, Serratia. The optimal dosages of Moringa are 96 mg/L and 80 mg/L respectively. We have observed a reduction of 60% of turbidity and a substantial remove of all pathogenic microorganisms after water treatment with Moringa oleifera seeds. For the combination treatment, 93% of initial turbidity and 92% of initial concentration of organic matter in the sample E2 were eliminated. The pH remained almost constant during the treatment.展开更多
Coal mining has changed the hydrogeological conditions of river basins,and studying how the relationship among different types of water body has changed under the influence of coal mining is of great significance for ...Coal mining has changed the hydrogeological conditions of river basins,and studying how the relationship among different types of water body has changed under the influence of coal mining is of great significance for understanding the regional hydrological cycle.We analyzed the temporal and spatial distribution of hydrochemical properties and environmental isotopes in the Hailiutu River Basin(HRB),China with a mixed model.The results showed that:(1)human activity(e.g.,coal mining and agricultural production)causes considerable changes in the hydrochemical properties of surface water in and around the mining areas,and leads to significant increases in the concentrations of Na^(+)and SO_(4)^(2-);(2)precipitation is the main source of water vapour in the HRB.The transformation between surface water and groundwater in the natural watershed is mainly affected by precipitation;and(3)in the mining areas,the average contribution rates of precipitation to the recharge of surface water and groundwater increased by 2.6%-7.9%and 2.7%-9.9%,respectively.Groundwater in the Salawusu Formation constitutes up to 61.3%-72.4%of mine water.Overall,this study is beneficial for quantifying the effects of coal mining on local hydrological cycles.The research results can provide a reference for local water resources management and ecological environment improvement.展开更多
Current research has been focused on heavy metals pollution in surface water and groundwater and effect on irrigated soil from El Minia Province, north Upper Egypt. Concentration of heavy metals (e.g., As, Co, Hg, Ni,...Current research has been focused on heavy metals pollution in surface water and groundwater and effect on irrigated soil from El Minia Province, north Upper Egypt. Concentration of heavy metals (e.g., As, Co, Hg, Ni, Se, Cd and Cr) in surface water, groundwater and irrigated soil samples is most significantly affected by leachate of many pollutants as the factories, agricultural activities, urban and natural processes. Microbiological parameters and microscopic investigations are revealed that some localities are common by micro-organisms, which are unsuitable for drinking waters.展开更多
This study of the gneiss-fractured-rock aquifer in Yaoundé capital of Cameroon determines: the aquifer setting-flow systems, the aquifer type, seasonal variations in rock-water interactions, evolution of the hydr...This study of the gneiss-fractured-rock aquifer in Yaoundé capital of Cameroon determines: the aquifer setting-flow systems, the aquifer type, seasonal variations in rock-water interactions, evolution of the hydrogeochemical processes, physicochemical parameters and the suitability for domestic-agro-industrial use of the groundwater. Physicochemical field tests were carried out on 445 wells during four seasons for EC, pH, TDS, Temperature and static water level from July 2016 to May 2017. 90 well samples were analyzed 45 samples per season: wet/dry. 38 borewell logs were used together with structural data to determine the aquifer setting. The field physico-chemical and laboratory analysis data of well samples were mounted unto various GIS software platforms: Global mapper, AqQa, Aquachem, Rockworks, Logplot7, Surfer and ArcGIS, to get indices/parameters/figures, by use of Durov’s, Piper’s and Gibbs diagrams, Water quality index WQI, USSL ratio, Sodium Absorption ratio SAR, Percent sodium %Na, Kelly Ratio KR, Magnesium Absorption Ratio MAR, Total Hardness TH, Residual Sodium Carbonate RSC and Permeability Index PI that were determined. The process of groundwater ions acquisition is three-fold: by recharge through atmospheric precipitation, by ion exchange/simple dissolution between the rock-groundwater and by groundwater mixing in its flow path. Water types are Ca-HCO3, Mg-HCO3 and Mg-Cl while hydrogeochemical facies are Ca-Mg-HCO3 and Ca-Mg-Cl-SO4. Most water samples are fresh, potable and soft all seasons. The hydrogeological conceptual model is that of a three-layered single phreatic fractured-rock-aquifer while other researchers postulated a two-aquifer, phreatic and semi-confined, two-layered model.展开更多
The aim of this study is to evaluate the hydrogeochemical characteristics and water environmental quality of shallow groundwater in the Suxian mining area of Huaibei coalfield,China.The natural formation process of sh...The aim of this study is to evaluate the hydrogeochemical characteristics and water environmental quality of shallow groundwater in the Suxian mining area of Huaibei coalfield,China.The natural formation process of shallow groundwater in Suxian is explored using Piper trilinear charts and Gibbs diagrams,and by examining the ratios between the major ions.United States Salinity Laboratory(USSL)charts,Wilcox diagrams,and the water quality index(WQI)are further employed to quantify the differences in water quality.The results reveal that the main hydrochemical facies of groundwater are HC03-Ca,and that silicate dissolution is the main factor controlling the ion content in shallow groundwater.The USSL charts and Wilcox diagrams show that most of the water samples would be acceptable for use in irrigation systems.The WQI results for each water sample are compared and analyzed,and the quality of groundwater samples around collapse ponds is found to be relatively poor.展开更多
文摘The Kandi basin is located in northeast Benin (West Africa). This study is focused on the estimation of water fluxes exchanged between the river Niger (and its tributaries) and the transboundary Iullemeden Aquifer System. In that framework, an innovative approach based on the application of the Bayesian Mixing Model (MixSIAR) analysis on water isotopes (oxygen-18, deuterium and tritium) was performed. Moreover, to assess the relevance of the model outputs, Pearson’s correlation and Principal Component Analysis (PCA) have been done. A complex relationship between surface water and groundwater has been found. Sixty percent (60%) of groundwater samples are made of more than 70% river water and rainwater;while 31.25% of surface water samples are made of about 84% groundwater. To safeguard sustainable water resources for the well-being of the local communities, surface water and groundwater must be managed as a unique component in the Kandi basin.
基金The National Key R&D Program of China under contract No.2022YFE0209300the National Natural Science Foundation of China under contract No.42006152+1 种基金the Zhejiang Provincial Natural Science Foundation of China under contract No.LQ21D060005the 111 Project under contract No.BP0820020.
文摘Subterranean estuaries(STEs)are characterized by the mixing of terrestrial fresh groundwater and seawater in coastal aquifers.Although microorganisms are important components of coastal groundwater ecosystems and play critical roles in biogeochemical transformations in STEs,limited information is available about how their community dynamics interact with hydrological,geochemical and environmental characteristics in STEs.Here,we studied bacterial and archaeal diversities and distributions with 16S rRNA-based Illumina MiSeq sequencing technology between surface water and groundwater in a karstic STE.Principal-coordinate analysis found that the bacterial and archaeal communities in the areas where algal blooms occurred were significantly separated from those in other stations without algal bloom occurrence.Canonical correspondence analysis showed that nutrients and salinity can explain the patterns of bacterial and archaeal community dynamics.The results suggest that hydrological,geochemical and environmental characteristics between surface water and groundwater likely control the bacterial and archaeal diversities and distributions in STEs.Furthermore,we found that some key species can utilize terrestrial pollutants such as nitrate and ammonia in STEs,indicating that these species(e.g.,Nitrosopumilus maritimus,Limnohabitans parvus and Simplicispira limi)may be excellent candidates for in situ degradation/remediation of coastal groundwater contaminations concerned with the nitrate and ammonia.Overall,this study reveals the coupling relationship between the microbial communities and hydrochemical environments in STEs,and provides a perspective of in situ degradation/remediation for coastal groundwater quality management.
文摘The Berg River Catchment based in the Western Cape Province,South Africa services the greater Cape Town area with water,subsequent to supplying the vast agricultural activities that exist in the middle and the lower reaches.This study thus investigates the hydrogeochemical interactions between surface and groundwater in the Berg River Catchment with the aim of establishing trends and transfer of constituents between the surface and groundwater systems,investigates the role that geology plays in water chemistry as well as identifies the geochemical processes controlling surface and groundwater chemistry in the catchment.This study was carried out using three types of research designs namely i)experimental research design;ii)field research design and meta-analysis research design.Furthermore,the study made use of hydrochemical data ranging from 2003 to 2013 obtained from the National Water Monitoring Database owned and maintained by the Department of Water and Sanitation and data that were sampled in 2016 by authors and analyzed using the ICP-MS Technique Ground Water Chart,Arc-GIS and Geosoft(Oasis Montaj)were further employed to model the data.The results indicated that:i)in the Upper Berg there is not much interaction and transfer of constituents between surface and groundwater;ii)the Middle Berg,however,indicated a degree of interaction with the sharing of constituents between the two water systems and iii)the Lower Berg indicated only NaCl water type also noting that the area situated near the river mouth whereby there is the mixing of river and seawater.
基金supported by the National Natural Science Foundation of China(41690141,41671067)the second Tibetan Plateau Scientific Expedition and Research Program(STEP)(2019QZKK0605)+1 种基金the Fundamental Research Funds for Central Universities(lzujbky-2019-40)CAS"Light of West China"and the State Key Laboratory of Cryospheric Science,CAS(SKLCS-ZZ-2020).
文摘Understanding the interaction between groundwater and surface water in permafrost regions is essential to study flood frequencies and river water quality, especially in the high latitude/altitude basins. The application of heat tracing method,based on oscillating streambed temperature signals, is a promising geophysical method for identifying and quantifying the interaction between groundwater and surface water. Analytical analysis based on a one-dimensional convective-conductive heat transport equation combined with the fiber-optic distributed temperature sensing method was applied on a streambed of a mountainous permafrost region in the Yeniugou Basin, located in the upper Heihe River on the northern Tibetan Plateau. The results indicated that low connectivity existed between the stream and groundwater in permafrost regions.The interaction between surface water and groundwater increased with the thawing of the active layer. This study demonstrates that the heat tracing method can be applied to study surface water-groundwater interaction over temporal and spatial scales in permafrost regions.
文摘The δ<sup>18</sup>O and δ<sup>2</sup>H stable isotope techniques for studying properties of groundwater and surface help us to understand more clearly about the distribution and movement of groundwater in the South of Hanoi area. There were 68 water samples from the studying area and analyzed by a Liquid Water Isotope Analyzer (LWIA-24D). The stable isotope values of the groundwater from Pleistocene aquifers were range from -3.21‰ to -9.55‰ δ<sup>18</sup>O and -35.32‰ to -67.44‰ δ<sup>2</sup>H;rainwater from -8.18‰ to -4.13‰ δ18O and -61.19‰ to -17.93‰ δ<sup>2</sup>H;Red river water from -7.51‰ to -5.29‰ δ<sup>18</sup>O and -51.60‰ to -38.99‰ δ<sup>2</sup>H. Based on stable isotope characteristics, the results show that there was a relationship between surface water and groundwater in the South of Hanoi city. It is that groundwater recharges for river water in the dry season with 74%, and in the rainfall season groundwater is recharged from river with 87%.
基金This study was carried out in the framework of the research project entitled“Assessing and Mapping the Environmental and Health Impacts of Abandoned and Ongoing Mining Activities in Lubumbashi and Its Neighborhood,Democratic Republic of Congo”with UNESCO-Sida Project funds(Contract No.4500309530).
文摘Arsenic,barium,bismuth,cadmium,cesium,chromium,cobalt,copper,iron,lead,manganese,molybdenum,nickel,strontium,thallium,tungsten,uranium,vanadium,and zinc concentrations were investigated in forty-two groundwater samples,twenty-four surface water and six surface sediment samples in Kinsevere industrial zone and its surroundings in February and march 2017,January,February and March 2018 to evaluate the potential human health risk.Chemical analyses were carried out by using ICP-SF-MS(Inductively Coupled Plasma-Sector Field Mass Spectrometry,Thermo Scientific Element II).The trace metals were detected at various concentrations in all the analyzed samples.Pb,Mn and Fe concentrations exceeded the European Union acceptable maximum limits for water intended for human consumption in 4.76%,28.57%and 61.90%of the groundwater samples,respectively and in 0%,50%and 100%of the surface water samples,respectively.As,Cr,Cu and Ni concentrations exceeded the recommended lower sediment quality guideline values in 33.33%,50%,83.33%and 83.33%of the surface sediment samples,respectively.All those elevated trace metal concentrations in the groundwater,surface water and sediments represent a risk for the health of local population as well as for aquatic organisms.
基金part of the UNESCO-Chair on Sustainable Groundwater Management in Mongoliafinancially supported by UNESCO/Japan Funds-in-Trust Co-operation for the Promotion of International Cooperation and Mutual Understanding.
文摘Drinking water supplies in Ulaanbaatar, the capital of Mongolia, are completely dependent on groundwater sourced from pumping wells located in an alluvial plain of the Tuul River which flows through Ulaanbaatar. The interaction between groundwater in the alluvial plain and river surface water was investigated using a hydrological and multi-tracers approach. The observed groundwater contour map clearly shows that the Tuul River recharges the floodplain groundwater and groundwater flows from east to west. The similarity of chemical and stable isotopic compositions suggests that groundwater is mainly recharged by Tuul River water in the vicinity of the river. In addition, considering groundwater contours and chemical composition, groundwater in the northern and southern mountain sides contribute to floodplain groundwater. Stable isotopic information suggests that winter season precipita- tion also contributes to the groundwater, because groundwater in a specific region has a considerably lower isotopic ratio. Using the End Member Mixing Analysis applying oxygen-18, SiO2 and HCO3 as tracers, the contribution ratios of the Tuul River, groundwater in the northem and southern mountain regions, and winter season precipitation to floodplain groundwater are esti- mated to be 58% to 85%, 1% to 54%, 0% to 16%, and 0% to 12%, respectively.
文摘According to the measured groundwater pollution concentration at two monitoring sections of Gusong River coast,adopting progressive dislocation correlation analysis method,correlation between surface water of Gusong River and groundwater pollution was analyzed.Result showed that propagation time of pollutant between river water and groundwater was longer.According to the water level observation data,river water level was&gt;1 m higher than groundwater table.The groundwater infiltration parameter was determined through the field permeability test data.The Dupuit formula was used to calculate recharge and discharge relationship between river surface water and groundwater.It was obtained that the daily average recharge capacity of right-bank river water to groundwater was 3 m3,and pollution of river surface water had very small influence on groundwater.Using MATLAB software for data analysis and processing,regression equation was established.The chloride as correlation analysis example,results showed that groundwater chloride had the maximum correlation with observation well distance,and correlation with time and monitoring value of surface water was very small.The linear relationship between surface water and groundwater was not obvious.
基金financially supported by the National Key Research and Development Program of China(Grant Nos.2016YFC0401407 and 2018YFC0506904)the National Natural Science Foundation of China(Grant No.41971037)。
文摘The hydrochemical composition of surface water and groundwater is a key parameter for understanding the evolution of water and its quality.In particular,little is known about the impact of transferred water on surface water and groundwater.In this study,Baiyangdian Lake was selected as a typical area for extensive groundwater exploration and surface water transfer in the North China Plain.Surface water and groundwater samples were sampled in dry/wet seasons and then analyzed before/after the water transfer,respectively.Generally,surface water and groundwater are extensively hydrologically connected based on hydrochemical evidence.It was found that the hydrochemical composition of the shallow groundwater is affected by the surface water and that the water quality of the deep groundwater is stable.However,inter-aquifer recharge processes from the shallow groundwater to the deep groundwater existed in the anthropogenic region impacted with high nitrate-ion concentrations.Also,the hydrochemical composition of the surface water and groundwater was dominated by rock-weathering and evaporation-precipitation processes.Due to the existence of the deep vadose zone in the alluvial fan,Na^(+)was exchanged into soil matrices during the leakage of the surface water.In addition,the transferred water resulted in surface water with good quality,and it also played as an important recharge source to groundwater.As the most important water resource for irrigation and drinking,deep groundwater should be paid more attention in the alluvial fan with frequent water transfer and extensive groundwater exploration.
文摘Based on the observation of a complete hydrological year from June 2014 to May 2015, the temporal and spatial variations of the main inorganic nitrogen (MIN, referring to NO3^--N, NO2^--N, NH4^+-N) in surface water and groundwater of the Li River and the Yuan River wetland succession zones are analyzed. The Li River and the Yuan River are located in agricultural and non-agricultural areas, and this study focus on the influence of surface water level and groundwater depth and precipitation on nitrogen pollution. The results show that NO3^--N in surface water accounts for 70%-90% of MIN, but it does not exceed the limit of national drinking water surface water standard. Groundwater is seriously polluted by NH4^+-N.Based on the groundwater quality standard of NH4^+-N, the groundwater quality in the Li River exceeds Class III water standard throughout the year, and the exceeding months' proportion of Yuan River reaches 58.3%. Compared with the Yuan River, MIN in groundwater of the Li River shows significant temporal and spatial variations owing to the influence of agricultural fertilization. The correlation between the concentrations of MIN and surface water level is poor, while the fitting effect of quadratic correlation between NH4^+-N concentration and groundwater depth is the best (R^2=0.9384), NO3^--N is the next (R^2=0.5128), NO2^--N is the worst (R^2=0.2798). The equation of meteoric water line is δD =7.83δ^18O+12.21, indicating that both surface water and groundwater come from atmospheric precipitation. Surface infiltration is the main cause of groundwater NH4^+-N pollution. Rainfall infiltration in non-fertilization seasons reduces groundwater nitrogen pollution, while rainfall leaching farming and fertilization aggravate groundwater nitrogen pollution.
文摘Water-rock interaction and groundwater mixing are important phenomena in understanding hydrogeological systems and the stability of rock slopes especially those consisting largely of moderately watersoluble minerals like calcite. In this study, the hydrogeological and geochemical evolutions of groundwater in a limestone quarry composed of three strata: limestone layer(covering), interbedded layer under the covering layer, and slaty greenstone layer(basement) were investigated. Water-rock interaction in the open-pit limestone quarry was evaluated using PHREEQC, while hierarchical cluster analysis(HCA)and principal component analysis(PCA) were used to classify and identify water sources responsible for possible groundwater mixing within rock layers. In addition, Geochemist's Workbench was applied to estimate the mixing fractions to clarify sensitive zones that may affect rock slope stability. The results showed that the changes in Ca2+and HCO3àconcentrations of several groundwater samples along the interbedded layer could be attributed to mixing groundwater from the limestone layer and that from slaty greenstone layer. Based on the HCA and PCA results, groundwaters were classified into several types depending on their origin:(1) groundwater from the limestone layer(LO),(2) mixed groundwater flowing along the interbedded layer(e.g., groundwater samples L-7, L-11, S-3 and S-4), and(3) groundwater originating from the slaty greenstone layer(SO). The mixing fractions of 41% LO: 59% SO, 64% LO: 36% SO, 43%LO: 57% SOand 25% LO: 75% SOon the normal days corresponded to groundwaters L-7, L-11, S-3 and S-4,respectively, while the mixing fractions of groundwaters L-7 and L-11(61% LO: 39% SOand 93% LO: 7% SO,respectively) on rainy days became the majority of groundwater originating from the limestone layer.These indicate that groundwater along the interbedded layer significantly affected the stability of rock slopes by enlarging multi-breaking zones in the layer through calcite dissolution and inducing high water pressure, tension cracks and potential sliding plane along this layer particularly during intense rainfall episodes.
文摘An assessment on the concentration of surfactants and pesticides of chlorinated hydrocarbon group in surface and groundwater, is made from Greater Kolkata located in the Western Ganga Delta, one of the largest urban agglomerate in Asia. Concentration of both anionic synthetic detergents and organochlorine pesticide resi-dues analysed from 54 and 19 sampling stations covering groundwater and surface water sources respec-tively, are generally found to be within the tolerance limit for human consumption. The concentration of synthetic detergent ranges from 0.084 to 0.425mg/l. Residues of organochlorine pesticides are analysed from different sources like tanks, lakes, rivers and groundwater. Lindane (0.01-0.43μg/l) and DDT (0.03-0.65 μg/l) are the most widely detected pesticide residues. Howerer, the two have not exceeded the limits for drinking anywhere. High value of aldrin and dieldrin (0.9μg/l) is obtained in the river Hugli at Barakpur-Seoraphuli, 20 km north of Kolkata. Likewise high value of Heptachloreis detected in a canal water sample at Palta (0.05 μg/l), a suburban area. Seasonally, the pesticide concentration in surface water is maximum during winter due to their higher application and minimum during monsoon. In groundwater, however, this relationship is reverse due to higher infiltration of surface water during monsoon.
文摘The study aims to identify a suitable site for open and bore well in a farmhouseusing ground magnetic survey in south India.It also aims to define depth to granitoid and structural elements which traverse the selected area.Magnetic data(n=84)measured,processed and interpreted as qualitative and quantitatively.The results of total magnetic intensities indicate that the area is composed of linear magnetic lows trending NE-SW direction and circular to semi-circular causative bodies.The magnetic values ranged from-137 nT to 2345 nT with a mean of 465 nT.Reduction to equator shows significant shifting of causative bodies in the southern and northern directions.Analytical signal map shows exact boundary of granitic bodies.Cosine directional filter has brought out structural element trending NE-SW direction.Results of individual profile brought to light structurally weak zone between 90 m and 100 m in all the profile lines.Sudden decrease of magnetic values from 2042 nT to 126 nT noticed in profile line 6 between 20 m and 30 m indicates fault occurrence.Magnetic breaks obtained from these maps were visualized,interpreted and identified two suitable sites for open and bore well.Radially averaged power spectrum estimates depth of shallow and deep sources in 5 m and 50 m,respectively.Euler method has also been applied to estimate depth of granitoid and structural elements using structural indexes 0,1,2,and 3 and found depth ranges from<10 m to>90 m.Study indicates magnetic method is one of the geophysical methods suitable for groundwater exploration and site selection for open and borewells.
文摘Ergene Basin is one of the most important industrial centers due to the geographical location in Turkey. Uncontrolled and rapidly increasing industrialization brings together a large number of environmental problems in the basin. In this study, pollution was investigated in the water samples taken at time intervals and different parts of groundwater and surface water resources located within Ergene Basin by methylene blue anionic surfactants (MBAS) analysis method. Turbidity, temperature, pH, electrical conductivity (EC), concentrations of total P and linear alkylbenzene sulfonates (LAS) were simultaneously determined in the investigated water resources. The results were compared with the Turkish Water Pollution Control Regulation specified in the Quality Criteria of the Inland Water Resources according to their class. The total P and LAS concentrations of surface waters are generally higher than groundwater. In terms of LAS concentrations, the groundwater is Ⅰ-Ⅱ class and the surface water is Ⅱ-Ⅳ class.
文摘The river water and groundwater from Lagbe town in Benin Republic were collected and analyzed for physical, chemical and microbiological parameters. The surface water samples were treated with alum, Moringa oleifera seeds powder and the combination of alum and Moringa oleifera seeds. The jar-test essays were carried out with two water samples at initial turbidities 7.2 NTU and 14.4 NTU. The water samples analyzed are fairly mineralized (conductivity varies between 166 and 687 μS/cm), enough soft and contain the nitrate (104 mg/L for W4 sample). They are greatly polluted by pathogenic microorganisms such as Escherichia coli, Klebsiella, Enterococcus, Vibrio, Serratia. The optimal dosages of Moringa are 96 mg/L and 80 mg/L respectively. We have observed a reduction of 60% of turbidity and a substantial remove of all pathogenic microorganisms after water treatment with Moringa oleifera seeds. For the combination treatment, 93% of initial turbidity and 92% of initial concentration of organic matter in the sample E2 were eliminated. The pH remained almost constant during the treatment.
基金This research was supported by the National Key Research and Development Program of China(2018YFC0406401)the Inner Mongolia Autonomous Region“Grassland Talents”Project.
文摘Coal mining has changed the hydrogeological conditions of river basins,and studying how the relationship among different types of water body has changed under the influence of coal mining is of great significance for understanding the regional hydrological cycle.We analyzed the temporal and spatial distribution of hydrochemical properties and environmental isotopes in the Hailiutu River Basin(HRB),China with a mixed model.The results showed that:(1)human activity(e.g.,coal mining and agricultural production)causes considerable changes in the hydrochemical properties of surface water in and around the mining areas,and leads to significant increases in the concentrations of Na^(+)and SO_(4)^(2-);(2)precipitation is the main source of water vapour in the HRB.The transformation between surface water and groundwater in the natural watershed is mainly affected by precipitation;and(3)in the mining areas,the average contribution rates of precipitation to the recharge of surface water and groundwater increased by 2.6%-7.9%and 2.7%-9.9%,respectively.Groundwater in the Salawusu Formation constitutes up to 61.3%-72.4%of mine water.Overall,this study is beneficial for quantifying the effects of coal mining on local hydrological cycles.The research results can provide a reference for local water resources management and ecological environment improvement.
文摘Current research has been focused on heavy metals pollution in surface water and groundwater and effect on irrigated soil from El Minia Province, north Upper Egypt. Concentration of heavy metals (e.g., As, Co, Hg, Ni, Se, Cd and Cr) in surface water, groundwater and irrigated soil samples is most significantly affected by leachate of many pollutants as the factories, agricultural activities, urban and natural processes. Microbiological parameters and microscopic investigations are revealed that some localities are common by micro-organisms, which are unsuitable for drinking waters.
文摘This study of the gneiss-fractured-rock aquifer in Yaoundé capital of Cameroon determines: the aquifer setting-flow systems, the aquifer type, seasonal variations in rock-water interactions, evolution of the hydrogeochemical processes, physicochemical parameters and the suitability for domestic-agro-industrial use of the groundwater. Physicochemical field tests were carried out on 445 wells during four seasons for EC, pH, TDS, Temperature and static water level from July 2016 to May 2017. 90 well samples were analyzed 45 samples per season: wet/dry. 38 borewell logs were used together with structural data to determine the aquifer setting. The field physico-chemical and laboratory analysis data of well samples were mounted unto various GIS software platforms: Global mapper, AqQa, Aquachem, Rockworks, Logplot7, Surfer and ArcGIS, to get indices/parameters/figures, by use of Durov’s, Piper’s and Gibbs diagrams, Water quality index WQI, USSL ratio, Sodium Absorption ratio SAR, Percent sodium %Na, Kelly Ratio KR, Magnesium Absorption Ratio MAR, Total Hardness TH, Residual Sodium Carbonate RSC and Permeability Index PI that were determined. The process of groundwater ions acquisition is three-fold: by recharge through atmospheric precipitation, by ion exchange/simple dissolution between the rock-groundwater and by groundwater mixing in its flow path. Water types are Ca-HCO3, Mg-HCO3 and Mg-Cl while hydrogeochemical facies are Ca-Mg-HCO3 and Ca-Mg-Cl-SO4. Most water samples are fresh, potable and soft all seasons. The hydrogeological conceptual model is that of a three-layered single phreatic fractured-rock-aquifer while other researchers postulated a two-aquifer, phreatic and semi-confined, two-layered model.
基金the Postgraduate Innovation Fund project of Anhui University of Science and Technology(2019CX2006)the National Natural Science Foundation of China(41773100)+1 种基金a Research Project of Huaibei Mining Group Co.(2020)a Research Project of Wanbei Coal-Electricity Group Co.,Ltd.(2020).
文摘The aim of this study is to evaluate the hydrogeochemical characteristics and water environmental quality of shallow groundwater in the Suxian mining area of Huaibei coalfield,China.The natural formation process of shallow groundwater in Suxian is explored using Piper trilinear charts and Gibbs diagrams,and by examining the ratios between the major ions.United States Salinity Laboratory(USSL)charts,Wilcox diagrams,and the water quality index(WQI)are further employed to quantify the differences in water quality.The results reveal that the main hydrochemical facies of groundwater are HC03-Ca,and that silicate dissolution is the main factor controlling the ion content in shallow groundwater.The USSL charts and Wilcox diagrams show that most of the water samples would be acceptable for use in irrigation systems.The WQI results for each water sample are compared and analyzed,and the quality of groundwater samples around collapse ponds is found to be relatively poor.