Low energy ions exist widely in natural world, but people pay a little attention on. the interaction between low energy ions and matter, it is even more out of the question of studying on the relation of low energy io...Low energy ions exist widely in natural world, but people pay a little attention on. the interaction between low energy ions and matter, it is even more out of the question of studying on the relation of low energy ions and the complicated organism. The discovery of bioeffect induced by ion implantation has, however, opened a new branch in the field of ion beam application in life sciences. This paper reports recent advances in research on the role of low energy ions in Chemical synthesis of the biomolecules and application in genetic modification.展开更多
The understanding of the spatial distribution of soil organic carbon(SOC)and its influencing factors is crucial for comprehending the global carbon cycle.However,the impact of soil geochemical and climatic conditions ...The understanding of the spatial distribution of soil organic carbon(SOC)and its influencing factors is crucial for comprehending the global carbon cycle.However,the impact of soil geochemical and climatic conditions on SOC remains limited,particularly in dryland farming areas.In this study,we aimed to enhance the understanding of the factors influencing the distribution of SOC in the drylands of the Songliao Plain,Northeast China.A dataset comprising 35,188 measured soil samples was used to map the SOC distribution in the region.Multiple linear regression(MLR)and random forest models(RFM)were employed to assess the importance of driving indicators for SOC.We also carried out partial correlation and path analyses to further investigate the relationship between climate and geochemistry.The SOC content in dryland soils of the Songliao Plain ranged from 0.05%to 11.63%,with a mean value of 1.47%±0.90%.There was a notable increasing trend in SOC content from the southwest to the northeast regions.The results of MLR and RFM revealed that temperature was the most critical factor,demonstrating a significant negative correlation with SOC content.Additionally,iron oxide was the most important soil geochemical indicator affecting SOC variability.Our research further suggested that climate may exert an indirect influence on SOC concentrations through its effect on geochemical properties of soil.These insights highlight the importance of considering both the direct and indirect impact of climate in predicting the SOC under future climate change.展开更多
This study aimed to clarify that organic anion transporters(OATs)mediate the drug–drug interaction(DDI)between imipenem and cilastatin.After co-administration with imipenem,the plasma concentrations and the plasma co...This study aimed to clarify that organic anion transporters(OATs)mediate the drug–drug interaction(DDI)between imipenem and cilastatin.After co-administration with imipenem,the plasma concentrations and the plasma concentration-time curve(AUC)of cilastatin were significantly increased,while renal clearance and cumulative urinary excretion of cilastatin were decreased.At the same time,imipenem significantly inhibited the uptake of cilastatin in rat kidney slices and in human OAT1(hOAT1)-HEK293 and human OAT3(hOAT3)-HEK293 cells.Probenecid,p-aminohippurate,and benzylpenicillin inhibited the uptake of imipenem and cilastatin in rat kidney slices and in hOAT1-and hOAT3-HEK 293 cells,respectively.The uptakes of imipenem and cilastatin in hOAT1-and hOAT3-HEK 293 cells were significantly higher than that in mock-HEK-293 cells.Moreover,the K m values of cilastatin were increased in the presence of imipenem with unchanged V max,indicating that imipenem inhibited the uptake of cilastatin in a competitive manner.When imipenem and cilastatin were co-administered,the level of imipenem was higher compared with imipenem alone both in vivo and in vitro.But,cilastatin significantly inhibited the uptake of imipenem when dehydropeptidase-1(DPEP1)was silenced by RNAi technology in hOAT1-and hOAT3-HEK 293 cells.In conclusion,imipenem and cilastatin are the substrates of OAT1 and OAT3.OAT1 and OAT3 mediate the DDI between imipenem and cilastatin.Meanwhile,cilastatin also reduces the hydrolysis of imipenem by inhibiting the uptake of imipenem mediated by OAT1 and OAT3 in the kidney as a complement.展开更多
China has been experiencing widespread air pollution due to rapid industrialization and urbanization in recent decades.The two major concerns of ambient air quality in China are particulate matter(PM)and tropospheric ...China has been experiencing widespread air pollution due to rapid industrialization and urbanization in recent decades.The two major concerns of ambient air quality in China are particulate matter(PM)and tropospheric ozone(O3).With the implementation of air pollution prevention and control actions in the last five years,the PM pollution in China has been substantially reduced.In contrast,under the conditions of the urban air pollution complex,the elevated O3 levels in city clusters of eastern China,especially in warm seasons,have drawn increasing attention.Emissions of air pollutants and their precursors not only contribute to regional air quality,but also alter climate.Climate change in turn can change chemical processes,long-range transport,and local meteorology that influence air pollution.Compared to PM,less is known about O3 pollution and its climate effects over China.Here,we present a review of the main findings from the literature over the period 2011-18 with regard to the characteristics of O3 concentrations in China and the mechanisms that drive its interannual to decadal variations,aiming to identify robust conclusions that may guide decision-making for emissions control and to highlight critical knowledge gaps.We also review regional and global modeling studies that have investigated the impacts of tropospheric O3 on climate,as well as the projections of future tropospheric O3 owing to climate and/or emission changes.展开更多
During the recent four decades since 1980,a series of modern climate satellites were launched,allowing for the measurement and record-keeping of multiple climate parameters,especially over the polar regions where trad...During the recent four decades since 1980,a series of modern climate satellites were launched,allowing for the measurement and record-keeping of multiple climate parameters,especially over the polar regions where traditional observations are difficult to obtain.China has been actively engaging in polar expeditions.Many observations were conducted during this period,accompanied by improved Earth climate models,leading to a series of insightful understandings concerning Arctic and Antarctic climate changes.Here,we review the recent progress China has made concerning Arctic and Antarctic climate change research over the past decade.The Arctic temperature increase is much higher than the global-mean warming rate,associated with a rapid decline in sea ice,a phenomenon called the Arctic Amplification.The Antarctic climate changes showed a zonally asymmetric pattern over the past four decades,with most of the fastest changes occurring over West Antarctica and the Antarctic Peninsula.The Arctic and Antarctic climate changes were driven by anthropogenic greenhouse gas emissions and ozone loss,while tropical-polar teleconnections play important roles in driving the regional climate changes and extreme events over the polar regions.Polar climate changes may also feedback to the entire Earth climate system.The adjustment of the circulation in both the troposphere and the stratosphere contributed to the interactions between the polar climate changes and lower latitudes.Climate change has also driven rapid Arctic and Southern ocean acidification.Chinese researchers have made a series of advances in understanding these processes,as reviewed in this paper.展开更多
Based on the reanalysis dataset ERA40 of European Center of Medium Range Weather Forcast (ECMWF), winter climate change and characteristics of sea ice-atmosphere interaction at high northern latitudes for recent sev...Based on the reanalysis dataset ERA40 of European Center of Medium Range Weather Forcast (ECMWF), winter climate change and characteristics of sea ice-atmosphere interaction at high northern latitudes for recent several tens of years are analyzed. Superposed upon the background of global warming, the amplitude of temperature increase in winter at high northern latitudes is bigger and it exhibits different features in different regions. From the end of 1970 s, the Greenland Sea, the Barents Sea and most part of Euro-Asian continent and North American continent are getting warmer, whereas the Labrador Sea, the Greenland and the area around the Bering Strait are getting colder. Meanwhile, the sea level pressure in the central part of the northern polar region and the place where the climatic Icelandic low exist decreases, but in places farther southward it increases. Since the 1970 s, the sensible heat flux and latent heat flux sent to the atmosphere from the Greenland Sea and the Barents Sea has increased, this is mainly due to the reduction of sea ice concentration and the weakening of insulator and shield effect of the solid ice accordingly caused by the increase of air temperature. In sea ice free area of the Norwegian Sea, the sensible heat flux and latent heat flux sent to the atmosphere has reduced due to decrease of temperature and humidity differences between the air and the sea surface caused by increase of air temperature and humidity. In the Labrador Sea, due to decrease of air temperature and humidity and increase of temperature and humidity differences between the air and the sea surface accordingly, the sea gives more sensible heat flux and latent heat flux to the air. This will lead to the growth of sea ice extent there. The features of linear regression of sea level pressure, sea ice concentration and sum of sensible heat flux and latent heat flux toward time series of the leading mode of EOF expansion of surface air temperature are close to those of their own EOF expansion for the leading mode, respectively. This shows that these variables share similar features of variation with time linearly.展开更多
Ultrasmall gold nanoparticles(AuNPs)typically includes atomically precise gold nanoclusters(AuNCs)and AuNPs with a core size below 3 nm.Serving as a bridge between small molecules and traditional inorganic nanoparticl...Ultrasmall gold nanoparticles(AuNPs)typically includes atomically precise gold nanoclusters(AuNCs)and AuNPs with a core size below 3 nm.Serving as a bridge between small molecules and traditional inorganic nanoparticles,the ultrasmall AuNPs show the unique advantages of both small molecules(e.g.,rapid distribution,renal clearance,low non-specific organ accumulation)and nanoparticles(e.g.,long blood circulation and enhanced permeability and retention effect).The emergence of ultrasmall AuNPs creates significant opportunities to address many challenges in the health field including disease diagnosis,monitoring and treatment.Since the nano–bio interaction dictates the overall biological applications of the ultrasmall AuNPs,this review elucidates the recent advances in the biological interactions and imaging of ultrasmall AuNPs.We begin with the introduction of the factors that influence the cellular interactions of ultrasmall AuNPs.We then discuss the organ interactions,especially focus on the interactions of the liver and kidneys.We further present the recent advances in the tumor interactions of ultrasmall AuNPs.In addition,the imaging performance of the ultrasmall AuNPs is summarized and discussed.Finally,we summarize this review and provide some perspective on the future research direction of the ultrasmall AuNPs,aiming to accelerate their clinical translation.展开更多
To prepare a highly efficient NiMo/Al_(2)O_(3) hydrodesulfurization catalyst,the combined effects of specific organic functional groups and alumina surface characteristics were investigated.First,the correlation betwe...To prepare a highly efficient NiMo/Al_(2)O_(3) hydrodesulfurization catalyst,the combined effects of specific organic functional groups and alumina surface characteristics were investigated.First,the correlation between the surface characteristics of four different alumina and the existing Mo species states was established.It was found that the Mo equilibrium adsorption capacity can be used as a specific descriptor to quantitatively evaluate the changes in surface characteristics of different alumina.A lower Mo equilibrium adsorption capacity for alumina means weaker metal-support interaction and the loaded Mo species are easier to transform into MoS2.However,the Mo-O-Al bonds still exist at the metal-support interface.The introduction of cationic surfactant hecadecyl trimethyl ammonium bromide(CTAB)can further improve Mo species dispersion through electrostatic attraction with Mo anions and interaction of its alkyl chain with the alumina surface;meanwhile,the introduction of ethylenediamine tetraacetic acid(EDTA)can complex with Ni ions to enhance the Ni-promoting effect on Mo.Therefore,the NiMo catalyst designed using alumina with lower Mo equilibrium adsorption capacity and the simultaneous addition of EDTA and CTAB exhibits the highest hydrodesulfurization activity for 4,6-dimethyl dibenzothiophene because of its proper metal-support interaction and more well-dispersed Ni-Mo-S active phases.展开更多
In this paper, the RIEMS 2.0 model is used to simulate the distribution of sulfate, black carbon, and organic carbon aerosols over China (16.2°-44.1°N, 93.4°-132.4°E) in 1998. The climate effects...In this paper, the RIEMS 2.0 model is used to simulate the distribution of sulfate, black carbon, and organic carbon aerosols over China (16.2°-44.1°N, 93.4°-132.4°E) in 1998. The climate effects of these three anthropogenic aerosols are also simulated. The results are summarized as follows: (1) The regional average column burdens of sulfate, BC, OC, and SOC were 5.9, 0.24, 2.4, and 0.49 mg m-2, with maxima of 33.9, 1.48, 7.3, and 1.1 mg m-2, respectively. The column burden and surface concentration of secondary organic carbon accounted for about 20% and 7%, respectively, of the total organic carbon in eastern China. (2) The radiative forcings of sulfate, organic carbon, and black carbon at the top of the atmosphere were -1.24, -0.6, and 0.16 W m 2 respectively, with extremes of -5.25, -2.6, and 0.91 W m-2. (3) The surface air temperature changes caused by sulfate, organic carbon, and black carbon were -0.07, -0.04, and 0.01 K, respectively. The air temperature increase caused by black carbon at 850 hPa was higher than that at the surface. The net effect of the three kinds of anthropogenic aerosols together decreased the annual average temperature by -0.075 K; the maximum value was -0.3 K. (4) Black carbon can reduce the precipitation in arid and semi-arid areas of northern China and increase the precipitation in wet and semi-wet areas of southern China. The average precipitation increase caused by black carbon in China was 0.003 mm d^-1. The net effect of the three kinds of anthropogenic aerosols was to decrease the precipitation over China by 0.008 mmd ^-1.展开更多
For the scientific management of farmland, it is significant to understand the spatio-temporal variability of soil organic matter and to study the influences of related factors. Using geostatistical theory, GIS spatia...For the scientific management of farmland, it is significant to understand the spatio-temporal variability of soil organic matter and to study the influences of related factors. Using geostatistical theory, GIS spatial analysis, trend analysis and a Geographically Weighted Regression (GWR) model, this study analyzed the response of soil organic matter to climate and socio-economic factors in central Heilongjiang Province during the past 25 years. Second soil survey data of China for 1979-1985, 2005 field sampling data, climate observations and socio-economic data for 1980-2005 were analyzed. First, soil organic matter in 2005 was spatially interpolated using the Co-Kriging method along with auxiliary data sets of soil type and pH. The spatio-temporal variability was then studied by comparison with the 1980s second soil census data. Next, the temporal trends in climate and socio-economic factors over the past 25 years were investigated. Finally, we examined the variation of the response of soil organic matter to climate and socio-economic factors using the GWR model spatially and temporally. The model showed that 53.82% area of the organic matter content remained constant and 29.39% has decreased during the past 25 years. The impact of precipitation on organic matter content is mainly negative, with increasing absolute values of the regression coefficient. The absolute value of regression coefficient of annual average temperature has decreased, and more areas are now under its negative effects. In addition, the areas of positive regression coefficient of annual sunshine hours have northward shifted, with the increasing absolute value of positive coefficient and decreasing absolute value of negative coefficient. The areas of positive regression coefficient of mechanized farming as a socio-economic factor have westward shifted, with the increasing absolute value of negative coefficient and decreasing absolute value of positive coefficient. The area of regions with the positive regression coefficient of irrigation has expanded. The regions with positive regression coefficient of fertilizer use have shrinked. The positive regression coefficient of mulch film consumption has significantly increased. The regression coefficient of pesticide consumption was mainly positive in the west of the study area, while it was negative to the east. Generally, GWR model is capable to investigate the influence of both climatic and socio-economic factors, avoided the insufficiency of other research based on the single perspective of climatic or socio-economic factors. Therefore, we can conclude that GWR model could provide methodological support for global change research and serve as basic reference for cultivated land quality improvement and agricultural decision making.展开更多
Improving our knowledge of the effects of environmental factors (e.g. soil conditions, precipitation and temperature) on belowground biomass in an alpine grassland is essential for understanding the consequences of ...Improving our knowledge of the effects of environmental factors (e.g. soil conditions, precipitation and temperature) on belowground biomass in an alpine grassland is essential for understanding the consequences of carbon storage in this biome. The object of this study is to investigate the relative importance of soil nutrients and climate factors on belowground biomass in an alpine meadow in the source region of the Yangtze and Yellow rivers, Tibetan Plateau. Soil organic carbon (SOC), total nitrogen (TN) and total phosphorous (TP) contents and belowground biomass were measured at 22 sampling sites across an alpine meadow on the Tibetan Plateau. We analyzed the data by using the redundancy analysis to determine the main environmental factors affecting the belowground biomass and the contribution of each factor. The results showed that SOC, TN and TP were the main factors that influenced belowground biomass, and the contribution of SOC, TN and TP on biomass was in the range of 47.87%-72.06% at soil depths of 0-30 cm. Moreover, the combined contribution of annual mean temperature (AMT) and mean annual precipitation (MAP) on belowground biomass ranged from 0.92% to 4.10%. A potential mechanism for the differences in belowground biomass was caused by the variations in soil nitrogen and phosphorous, which were coupled with SOC. A significant correlation was observed between MAP and soil nutrients (SOC, TN and TP) at the soil depth of 0-10 cm (P〈0.05). We concluded that precipitation is an important driving force in regulating ecosystem functioning as reflected in variations of soil nutrients (SOC, TN and TP) and dynamics of belowground biomass in alpine grassland ecosystems.展开更多
On the basis of multi-proxy analysis on TOC, TN, C/N, organic δ^13C and grain size, sediment record from Qinghai Lake provides evidences of stepwise-pattemed climatic change since 16 ka BE Results show that Qinghai L...On the basis of multi-proxy analysis on TOC, TN, C/N, organic δ^13C and grain size, sediment record from Qinghai Lake provides evidences of stepwise-pattemed climatic change since 16 ka BE Results show that Qinghai Lake underwent six environmental stages. From 16.2 to 14.3 ka BP and from 4.0 to 2.1 ka BP, the organic δ^13C value was controlled by the concentration of atmospheric CO2. Relative higher organic δ^13C values occurred between 14.3 to 10.4 ka BP indicative of water hardness decrease resulted from melting ice water, corresponding to two intervals of C/N peak values to the Boling and AIlerod warm periods in Europe respectively. From 10.4 ka BP, Qinghai Lake entered the Holocene and the climate was warm and a little dry. The Megathermal appeared at about 6.7 ka BP when the vegetation around the lake transformed into a forest. Between 6.3 ka BP and 4.0 ka BP, the temperature decreased and δ^13C value was controlled by the expansion of C3 plants and the retreat of C4 plants in river catchment. Since 4.0 ka BP, the climate gradually became cold and dry. From 2.1 ka BP, the cold-dry climate and human activity resulted in an abrupt increase in C/N with deceased δ^13C value; meanwhile, many coarse grains appeared in sediments.展开更多
Data gathered from the 1987 National Nutrition Survey in the Philippines provided the opportunity to study the interactions among micronutrient deficiencies and undernutrition in different age groups as basis for prog...Data gathered from the 1987 National Nutrition Survey in the Philippines provided the opportunity to study the interactions among micronutrient deficiencies and undernutrition in different age groups as basis for program targeting. A randomly selected set of 50% of the households (3,200) covered by the national survey served as source of subjects. Results showed that there was a greater proportion of anemia among the undernourished (as judged by weight for age in children and weight for height in adults) (66.0%)than among the adequately nourished (54.6%) (P <0.01 ). However, the observed differencesin the proportion of serum vitamin A deficiency and of goiter among the undernourished compared to the adequately nourished were not significant. Also not significant were the observed higher prevalence of anemia among subjects with acceptable serum vitamin A levels for both adequately nourished and undernourished, and the higher prevalence of vitamin A deficiency among the non-anemics. Again there were no significant differences in the prevalence of anemia among goitrous and non-goitrous subjects, as well as the prevalence of goiter among anemic and non-anemic subjects. Neither were there significant differences in the prevalence of vitamin A deficiency among goitrous and non-goitrous subjects, but there were significant differences in the prevalence of goiter among vitamin A deficient and non-vitamin A defjcient subjects among the 7-14 years old and among pregnant and lactating women.The study concludes that at the national level, there is apparently an interaction between anemia and protein-energy undernutrition and possibly also between goiter and vitamin A deficiency in the high-risk age groups, but between anemia on the one hand and goiter and vitamin A deficiency in the other, perhaps because of clustering in the latter conditions not found in anemia and general undernutrition. These findings may be useful in targeting communities with high prevalence of micronutrient deficiencies by using prevalence of underweight and goiter as indicators for high prevalence of anemia and vitamin A deficiency, respectively展开更多
Dissolved organic matter (DOM) is closely linked to human activities in drainage basins and plays a crucial role in maintaining ecosystem functioning and reflecting environmental quality. However, the impacts of clima...Dissolved organic matter (DOM) is closely linked to human activities in drainage basins and plays a crucial role in maintaining ecosystem functioning and reflecting environmental quality. However, the impacts of climate and anthropogenic-induced changes on DOM in riverine systems under increasingly warming conditions still need to be better understood, particularly at large regional scales. To address this knowledge gap, we analyzed a dataset containing 386 published measurements for nine major Chinese river systems, examining dissolved organic carbon (DOC) concentrations and optical properties of chromophoric DOM (CDOM) under diverse envi- ronmental conditions, including mean air temperature, precipitation, surface solar radiation, population density, and land use. Our findings indicate that riverine DOC concentrations are significantly higher in northern China (at ∼46.8%) than in the south. This disparity is primarily due to the high input of soil erosion-induced DOM from drying-affected lands (57.0%), farmland (49.1%), and forests in the north. The high temperate and strong hydrological conditions would lead to DOM degradation easily in the riverine system in the south of China. Our study highlights that various climatic and anthropogenic factors, such as agriculture, vegetation coverage, soil erosion, surface solar radiation, and precipitation, individually or in combination, can affect DOM dynamics in river systems. Therefore, considering alterations in DOM dynamics resulting from climate and environmental changes is crucial for carbon-neutral policies and sustainable river ecosystem assessments.展开更多
As Climate Change Haven Communities are constructed across the Northern Hemisphere, it will be necessary to attract two types of migrants to populate them. The first group consists of professionals and companies in ec...As Climate Change Haven Communities are constructed across the Northern Hemisphere, it will be necessary to attract two types of migrants to populate them. The first group consists of professionals and companies in eco-sustainable businesses, such as law firms, insurance companies, investment firms, banking, technological innovation, mass media, medical research and pharmaceutical research. The second group will consist of persons engaged in organic/eco-sustainable agriculture whose crops and animal husbandry practices can be transferred successfully to Climate Change Haven regions. The present research focuses on the social and economic variables that must be taken into account to insure that each new Climate Change Haven Community becomes successfully integrated with the local population and forms a cohesive, harmonious social structure. Examples are given from the United States, France, Spain, Portugal and Italy.展开更多
The interest in the national levels of the terrestrial carbon sink and its spatial and temporal variability with the climate and CO2 concentrations has been increasing. How the climate and the increasing atmospheric C...The interest in the national levels of the terrestrial carbon sink and its spatial and temporal variability with the climate and CO2 concentrations has been increasing. How the climate and the increasing atmospheric CO2 concentrations in the last century affect the carbon storage in continental China was investigated in this study by using the Modified Sheffield Dynamic Global Vegetation Model (M-SDGVM). The estimates of the M-SDGVM indicated that during the past 100 years a combination of increasing CO2 with historical temperature and precipitation variability in continental China have caused the total vegetation carbon storage to increase by 2.04 Pg C, with 2.07 Pg C gained in the vegetation biomass but 0.03 Pg C lost from the organic soil carbon matter. The increasing CO2 concentration in the 20th century is primarily responsible for the increase of the total potential vegetation carbon. These factorial experiments show that temperature variability alone decreases the total carbon storage by 1.36 Pg C and precipitation variability alone causes a loss of 1.99 Pg C. The effect of the increasing CO2 concentration alone increased the total carbon storage in the potential vegetation of China by 3.22 Pg C over the past 100 years. With the changing of the climate, the CO2 fertilization on China's ecosystems is the result of the enhanced net biome production (NBP), which is caused by a greater stimulation of the gross primary production (GPP) than the total soil-vegetation respiration. Our study also shows notable interannual and decadal variations in the net carbon exchange between the atmosphere and terrestrial ecosystems in China due to the historical climate variability.展开更多
In the last decade, the atmospheric part of the climate system experienced a shift from pronounced zonal to stronger meridional flow configurations and regionally diverse changes and trends. The climate system shows c...In the last decade, the atmospheric part of the climate system experienced a shift from pronounced zonal to stronger meridional flow configurations and regionally diverse changes and trends. The climate system shows complex interactions and nonlinear behavior, manifested in global warming, rising ocean temperatures and the retreat of Arctic sea ice. Although atmospheric trends and changes are observed, underlying processes are not well understood. In this study we diagnose the interaction of large-scale atmospheric eddies and the mean flow with respect to diabatic heating and cooling processes that impact on the atmospheric advection of heat. For this purpose, three-dimensional Eliassen-Palm flux theory is used in combination with an analysis of the thermodynamic equation, diabatic heating and cooling and heat advection. The most recent decades of observed winter climate are evaluated in terms of climatology and trends over the Atlantic, Arctic and Eurasia. The change of the atmospheric circulation and related processes differ between early and late winter. In early winter, the interaction of macro-turbulent eddies with the mean flow is inhibited at the Atlantic jet stream entrance region and atmospheric heat is meridionally advected into the Arctic, both related to strong high pressure anomalies. In late winter, these anomalies are inverted and a negative phase of the Arctic Oscillation with a more wavy mean flow and a tendency towards stronger meridionalization is observed.展开更多
Availability of reliable knowledge on future climate change impacts, vulnerability, and adaptation are considered key elements to improving adaptive capacities and developing proper adaptation actions. The Nile Delta ...Availability of reliable knowledge on future climate change impacts, vulnerability, and adaptation are considered key elements to improving adaptive capacities and developing proper adaptation actions. The Nile Delta vulnerability to Sea Level Rise (SLR) has been the subject of a relatively significant number of studies in Egypt. The research question that this paper intends to address is “to what extent have the produced scientific knowledge supported climate change adaptation policy making, concerning inundation by SLR in the Nile Delta”. To address this question, the paper begins with a review of the literature on policy-research interaction, based on which a framework of policy-research interactions is developed. This is followed by examining generated knowledge from research and the role of such knowledge on adaptation strategy development in Egypt. It was found that the research cycle has provided ample knowledge on the Nile Delta vulnerability to inundation by SLR. Additionally, the bulk of this research work and produced knowledge have been the main source of information for climate change adaptation policymaking. The interaction between research and policymaking interest in the climate change adaptation arena in Egypt confronted several challenges that may have reduced impacts of research on policymaking. These challenges included low interest in the far future, uncertain sea level rise impacts among policymakers and the uncoordinated research and varied estimates of sea level rise impacts provided by the research cycle. Moreover, the lack of proper and effective communication channels between the two cycles may have further hindered possible interaction.展开更多
The correlation between the Arctic Oscillation (AO) and ENSO reflects the strength of the interaction between climate systems in the low and high latitudes. Based on the long-term (501 years) control simulation of...The correlation between the Arctic Oscillation (AO) and ENSO reflects the strength of the interaction between climate systems in the low and high latitudes. Based on the long-term (501 years) control simulation of CCSM4, the authors investigated the linkage between the AO and ENSO in boreal winter. Based on the correlation coefficients between them, the authors divided the entire period into two groups: one that included the years with statistically significant correlations (G1), and the other the years with insignificant correlations (G2). in G1, the AO-related atmospheric circulation pattern resembles the ENSO-related one. The Aleutian Low (AL) acts as a bridge linking these two modes, in G2, however, the AO and ENSO signals are confined to the mid-high and mid-low latitudes, respectively. There is no significant linkage between the AO and ENSO in boreal winter, showing a low correlation coefficient. Further analysis suggests that changes in the climatological features, including the strengthened AO, the negative Pacific Decadal Oscillation phase, and the weakened AL, may be responsible for the enhanced relationships.展开更多
基金National Science & Technology Key ProgramNational Nature Science FOundation+1 种基金Chinese Academy of Sciences FoundationAnh
文摘Low energy ions exist widely in natural world, but people pay a little attention on. the interaction between low energy ions and matter, it is even more out of the question of studying on the relation of low energy ions and the complicated organism. The discovery of bioeffect induced by ion implantation has, however, opened a new branch in the field of ion beam application in life sciences. This paper reports recent advances in research on the role of low energy ions in Chemical synthesis of the biomolecules and application in genetic modification.
基金funded by the National Key Research and Development Program of China(Grant No.2023YFD1500801)Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA28020302)+1 种基金the Basic Geological Survey Project of China Geological Survey(Grant No.DD20230089)the project of Northeast Geological S&T Innovation Center of China Geological Survey(Grant Nos.QCJJ2023-53,QCJJ2023-54,QCJJ2022-41)。
文摘The understanding of the spatial distribution of soil organic carbon(SOC)and its influencing factors is crucial for comprehending the global carbon cycle.However,the impact of soil geochemical and climatic conditions on SOC remains limited,particularly in dryland farming areas.In this study,we aimed to enhance the understanding of the factors influencing the distribution of SOC in the drylands of the Songliao Plain,Northeast China.A dataset comprising 35,188 measured soil samples was used to map the SOC distribution in the region.Multiple linear regression(MLR)and random forest models(RFM)were employed to assess the importance of driving indicators for SOC.We also carried out partial correlation and path analyses to further investigate the relationship between climate and geochemistry.The SOC content in dryland soils of the Songliao Plain ranged from 0.05%to 11.63%,with a mean value of 1.47%±0.90%.There was a notable increasing trend in SOC content from the southwest to the northeast regions.The results of MLR and RFM revealed that temperature was the most critical factor,demonstrating a significant negative correlation with SOC content.Additionally,iron oxide was the most important soil geochemical indicator affecting SOC variability.Our research further suggested that climate may exert an indirect influence on SOC concentrations through its effect on geochemical properties of soil.These insights highlight the importance of considering both the direct and indirect impact of climate in predicting the SOC under future climate change.
基金supported by a grant from the National Natural Science Foundation of China (No. 81874324,81473280,U1608283)the Natural Science Foundation of Liaoning (No. 20170540293)Dalian Science and technology innovation fund (No. 2018J12SN065).
文摘This study aimed to clarify that organic anion transporters(OATs)mediate the drug–drug interaction(DDI)between imipenem and cilastatin.After co-administration with imipenem,the plasma concentrations and the plasma concentration-time curve(AUC)of cilastatin were significantly increased,while renal clearance and cumulative urinary excretion of cilastatin were decreased.At the same time,imipenem significantly inhibited the uptake of cilastatin in rat kidney slices and in human OAT1(hOAT1)-HEK293 and human OAT3(hOAT3)-HEK293 cells.Probenecid,p-aminohippurate,and benzylpenicillin inhibited the uptake of imipenem and cilastatin in rat kidney slices and in hOAT1-and hOAT3-HEK 293 cells,respectively.The uptakes of imipenem and cilastatin in hOAT1-and hOAT3-HEK 293 cells were significantly higher than that in mock-HEK-293 cells.Moreover,the K m values of cilastatin were increased in the presence of imipenem with unchanged V max,indicating that imipenem inhibited the uptake of cilastatin in a competitive manner.When imipenem and cilastatin were co-administered,the level of imipenem was higher compared with imipenem alone both in vivo and in vitro.But,cilastatin significantly inhibited the uptake of imipenem when dehydropeptidase-1(DPEP1)was silenced by RNAi technology in hOAT1-and hOAT3-HEK 293 cells.In conclusion,imipenem and cilastatin are the substrates of OAT1 and OAT3.OAT1 and OAT3 mediate the DDI between imipenem and cilastatin.Meanwhile,cilastatin also reduces the hydrolysis of imipenem by inhibiting the uptake of imipenem mediated by OAT1 and OAT3 in the kidney as a complement.
基金supported by the National Natural Science Foundation of China(Grant Nos.91744311 and91544219)the National Key Research and Development Program of China(Grant No.2016YFA0600203)the National Natural Science Foundation of China(Grant No.41405138)
文摘China has been experiencing widespread air pollution due to rapid industrialization and urbanization in recent decades.The two major concerns of ambient air quality in China are particulate matter(PM)and tropospheric ozone(O3).With the implementation of air pollution prevention and control actions in the last five years,the PM pollution in China has been substantially reduced.In contrast,under the conditions of the urban air pollution complex,the elevated O3 levels in city clusters of eastern China,especially in warm seasons,have drawn increasing attention.Emissions of air pollutants and their precursors not only contribute to regional air quality,but also alter climate.Climate change in turn can change chemical processes,long-range transport,and local meteorology that influence air pollution.Compared to PM,less is known about O3 pollution and its climate effects over China.Here,we present a review of the main findings from the literature over the period 2011-18 with regard to the characteristics of O3 concentrations in China and the mechanisms that drive its interannual to decadal variations,aiming to identify robust conclusions that may guide decision-making for emissions control and to highlight critical knowledge gaps.We also review regional and global modeling studies that have investigated the impacts of tropospheric O3 on climate,as well as the projections of future tropospheric O3 owing to climate and/or emission changes.
基金supported by the National Key Research and Development Program of China(2018YFA 0605703)the National Natural Science Foundation of China(No.41976193 and No.42176243)+8 种基金X.CHEN was supported by the National Key Research and Development Program of China(2019YFC1509100)the National Science Foundation of China(No.41825012)B.WU was supported by the Major Program of the National Natural Science Foundation of China(41790472)the National Key Basic Research Project of China(2019YFA0607002)the National Natural Science Foundation of China(41730959)X.CHENG was funded by the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.311021008)M.DING was supported by the National Natural Science Foundation of China(42122047 and 42105036)the Basic Research Fund of the Chinese Academy of Meteorological Sciences(2021Y021 and 2021Z006)Q.SUN was supported by the National Key R&D Program of China(No.2022YFE0106300).
文摘During the recent four decades since 1980,a series of modern climate satellites were launched,allowing for the measurement and record-keeping of multiple climate parameters,especially over the polar regions where traditional observations are difficult to obtain.China has been actively engaging in polar expeditions.Many observations were conducted during this period,accompanied by improved Earth climate models,leading to a series of insightful understandings concerning Arctic and Antarctic climate changes.Here,we review the recent progress China has made concerning Arctic and Antarctic climate change research over the past decade.The Arctic temperature increase is much higher than the global-mean warming rate,associated with a rapid decline in sea ice,a phenomenon called the Arctic Amplification.The Antarctic climate changes showed a zonally asymmetric pattern over the past four decades,with most of the fastest changes occurring over West Antarctica and the Antarctic Peninsula.The Arctic and Antarctic climate changes were driven by anthropogenic greenhouse gas emissions and ozone loss,while tropical-polar teleconnections play important roles in driving the regional climate changes and extreme events over the polar regions.Polar climate changes may also feedback to the entire Earth climate system.The adjustment of the circulation in both the troposphere and the stratosphere contributed to the interactions between the polar climate changes and lower latitudes.Climate change has also driven rapid Arctic and Southern ocean acidification.Chinese researchers have made a series of advances in understanding these processes,as reviewed in this paper.
基金The work was supported by Natural Science Foundation of China under grant 40233031.
文摘Based on the reanalysis dataset ERA40 of European Center of Medium Range Weather Forcast (ECMWF), winter climate change and characteristics of sea ice-atmosphere interaction at high northern latitudes for recent several tens of years are analyzed. Superposed upon the background of global warming, the amplitude of temperature increase in winter at high northern latitudes is bigger and it exhibits different features in different regions. From the end of 1970 s, the Greenland Sea, the Barents Sea and most part of Euro-Asian continent and North American continent are getting warmer, whereas the Labrador Sea, the Greenland and the area around the Bering Strait are getting colder. Meanwhile, the sea level pressure in the central part of the northern polar region and the place where the climatic Icelandic low exist decreases, but in places farther southward it increases. Since the 1970 s, the sensible heat flux and latent heat flux sent to the atmosphere from the Greenland Sea and the Barents Sea has increased, this is mainly due to the reduction of sea ice concentration and the weakening of insulator and shield effect of the solid ice accordingly caused by the increase of air temperature. In sea ice free area of the Norwegian Sea, the sensible heat flux and latent heat flux sent to the atmosphere has reduced due to decrease of temperature and humidity differences between the air and the sea surface caused by increase of air temperature and humidity. In the Labrador Sea, due to decrease of air temperature and humidity and increase of temperature and humidity differences between the air and the sea surface accordingly, the sea gives more sensible heat flux and latent heat flux to the air. This will lead to the growth of sea ice extent there. The features of linear regression of sea level pressure, sea ice concentration and sum of sensible heat flux and latent heat flux toward time series of the leading mode of EOF expansion of surface air temperature are close to those of their own EOF expansion for the leading mode, respectively. This shows that these variables share similar features of variation with time linearly.
基金the National Natural Science Foundation of China(Grant 22022403 and 22274058)Fundamental Research Funds for the Central Universities.
文摘Ultrasmall gold nanoparticles(AuNPs)typically includes atomically precise gold nanoclusters(AuNCs)and AuNPs with a core size below 3 nm.Serving as a bridge between small molecules and traditional inorganic nanoparticles,the ultrasmall AuNPs show the unique advantages of both small molecules(e.g.,rapid distribution,renal clearance,low non-specific organ accumulation)and nanoparticles(e.g.,long blood circulation and enhanced permeability and retention effect).The emergence of ultrasmall AuNPs creates significant opportunities to address many challenges in the health field including disease diagnosis,monitoring and treatment.Since the nano–bio interaction dictates the overall biological applications of the ultrasmall AuNPs,this review elucidates the recent advances in the biological interactions and imaging of ultrasmall AuNPs.We begin with the introduction of the factors that influence the cellular interactions of ultrasmall AuNPs.We then discuss the organ interactions,especially focus on the interactions of the liver and kidneys.We further present the recent advances in the tumor interactions of ultrasmall AuNPs.In addition,the imaging performance of the ultrasmall AuNPs is summarized and discussed.Finally,we summarize this review and provide some perspective on the future research direction of the ultrasmall AuNPs,aiming to accelerate their clinical translation.
基金funding of the National Key Research and Development Plan(Grant 2017YFB0306600)the Project of SINOPEC(NO.117006).
文摘To prepare a highly efficient NiMo/Al_(2)O_(3) hydrodesulfurization catalyst,the combined effects of specific organic functional groups and alumina surface characteristics were investigated.First,the correlation between the surface characteristics of four different alumina and the existing Mo species states was established.It was found that the Mo equilibrium adsorption capacity can be used as a specific descriptor to quantitatively evaluate the changes in surface characteristics of different alumina.A lower Mo equilibrium adsorption capacity for alumina means weaker metal-support interaction and the loaded Mo species are easier to transform into MoS2.However,the Mo-O-Al bonds still exist at the metal-support interface.The introduction of cationic surfactant hecadecyl trimethyl ammonium bromide(CTAB)can further improve Mo species dispersion through electrostatic attraction with Mo anions and interaction of its alkyl chain with the alumina surface;meanwhile,the introduction of ethylenediamine tetraacetic acid(EDTA)can complex with Ni ions to enhance the Ni-promoting effect on Mo.Therefore,the NiMo catalyst designed using alumina with lower Mo equilibrium adsorption capacity and the simultaneous addition of EDTA and CTAB exhibits the highest hydrodesulfurization activity for 4,6-dimethyl dibenzothiophene because of its proper metal-support interaction and more well-dispersed Ni-Mo-S active phases.
基金supported by the National Program on Key Basic Research Project of China (973) under Grant Nos.2006CB400506 and 2010CB428501the National Natural Science Foundation of China (Grant No.40775014)
文摘In this paper, the RIEMS 2.0 model is used to simulate the distribution of sulfate, black carbon, and organic carbon aerosols over China (16.2°-44.1°N, 93.4°-132.4°E) in 1998. The climate effects of these three anthropogenic aerosols are also simulated. The results are summarized as follows: (1) The regional average column burdens of sulfate, BC, OC, and SOC were 5.9, 0.24, 2.4, and 0.49 mg m-2, with maxima of 33.9, 1.48, 7.3, and 1.1 mg m-2, respectively. The column burden and surface concentration of secondary organic carbon accounted for about 20% and 7%, respectively, of the total organic carbon in eastern China. (2) The radiative forcings of sulfate, organic carbon, and black carbon at the top of the atmosphere were -1.24, -0.6, and 0.16 W m 2 respectively, with extremes of -5.25, -2.6, and 0.91 W m-2. (3) The surface air temperature changes caused by sulfate, organic carbon, and black carbon were -0.07, -0.04, and 0.01 K, respectively. The air temperature increase caused by black carbon at 850 hPa was higher than that at the surface. The net effect of the three kinds of anthropogenic aerosols together decreased the annual average temperature by -0.075 K; the maximum value was -0.3 K. (4) Black carbon can reduce the precipitation in arid and semi-arid areas of northern China and increase the precipitation in wet and semi-wet areas of southern China. The average precipitation increase caused by black carbon in China was 0.003 mm d^-1. The net effect of the three kinds of anthropogenic aerosols was to decrease the precipitation over China by 0.008 mmd ^-1.
基金financed by the National Basic Research Program of China(2010CB951502)the National Natural Science Foundation of China(41101537,40930101,41201184 and 71203157)
文摘For the scientific management of farmland, it is significant to understand the spatio-temporal variability of soil organic matter and to study the influences of related factors. Using geostatistical theory, GIS spatial analysis, trend analysis and a Geographically Weighted Regression (GWR) model, this study analyzed the response of soil organic matter to climate and socio-economic factors in central Heilongjiang Province during the past 25 years. Second soil survey data of China for 1979-1985, 2005 field sampling data, climate observations and socio-economic data for 1980-2005 were analyzed. First, soil organic matter in 2005 was spatially interpolated using the Co-Kriging method along with auxiliary data sets of soil type and pH. The spatio-temporal variability was then studied by comparison with the 1980s second soil census data. Next, the temporal trends in climate and socio-economic factors over the past 25 years were investigated. Finally, we examined the variation of the response of soil organic matter to climate and socio-economic factors using the GWR model spatially and temporally. The model showed that 53.82% area of the organic matter content remained constant and 29.39% has decreased during the past 25 years. The impact of precipitation on organic matter content is mainly negative, with increasing absolute values of the regression coefficient. The absolute value of regression coefficient of annual average temperature has decreased, and more areas are now under its negative effects. In addition, the areas of positive regression coefficient of annual sunshine hours have northward shifted, with the increasing absolute value of positive coefficient and decreasing absolute value of negative coefficient. The areas of positive regression coefficient of mechanized farming as a socio-economic factor have westward shifted, with the increasing absolute value of negative coefficient and decreasing absolute value of positive coefficient. The area of regions with the positive regression coefficient of irrigation has expanded. The regions with positive regression coefficient of fertilizer use have shrinked. The positive regression coefficient of mulch film consumption has significantly increased. The regression coefficient of pesticide consumption was mainly positive in the west of the study area, while it was negative to the east. Generally, GWR model is capable to investigate the influence of both climatic and socio-economic factors, avoided the insufficiency of other research based on the single perspective of climatic or socio-economic factors. Therefore, we can conclude that GWR model could provide methodological support for global change research and serve as basic reference for cultivated land quality improvement and agricultural decision making.
基金funded by the National Natural Science Foundation of China(41501057)the West Light Foundation of Chinese Academy of Sciences,the Open Fund of the Key Laboratory of Mountain Surface Processes and Eco-regulationthe National Basic Research Program of China(2013CBA01808)
文摘Improving our knowledge of the effects of environmental factors (e.g. soil conditions, precipitation and temperature) on belowground biomass in an alpine grassland is essential for understanding the consequences of carbon storage in this biome. The object of this study is to investigate the relative importance of soil nutrients and climate factors on belowground biomass in an alpine meadow in the source region of the Yangtze and Yellow rivers, Tibetan Plateau. Soil organic carbon (SOC), total nitrogen (TN) and total phosphorous (TP) contents and belowground biomass were measured at 22 sampling sites across an alpine meadow on the Tibetan Plateau. We analyzed the data by using the redundancy analysis to determine the main environmental factors affecting the belowground biomass and the contribution of each factor. The results showed that SOC, TN and TP were the main factors that influenced belowground biomass, and the contribution of SOC, TN and TP on biomass was in the range of 47.87%-72.06% at soil depths of 0-30 cm. Moreover, the combined contribution of annual mean temperature (AMT) and mean annual precipitation (MAP) on belowground biomass ranged from 0.92% to 4.10%. A potential mechanism for the differences in belowground biomass was caused by the variations in soil nitrogen and phosphorous, which were coupled with SOC. A significant correlation was observed between MAP and soil nutrients (SOC, TN and TP) at the soil depth of 0-10 cm (P〈0.05). We concluded that precipitation is an important driving force in regulating ecosystem functioning as reflected in variations of soil nutrients (SOC, TN and TP) and dynamics of belowground biomass in alpine grassland ecosystems.
基金Supported by National Key Basic Research Fund (No. 2004CB720205) and National Nature and Science Foundation of China (No. 40331003).
文摘On the basis of multi-proxy analysis on TOC, TN, C/N, organic δ^13C and grain size, sediment record from Qinghai Lake provides evidences of stepwise-pattemed climatic change since 16 ka BE Results show that Qinghai Lake underwent six environmental stages. From 16.2 to 14.3 ka BP and from 4.0 to 2.1 ka BP, the organic δ^13C value was controlled by the concentration of atmospheric CO2. Relative higher organic δ^13C values occurred between 14.3 to 10.4 ka BP indicative of water hardness decrease resulted from melting ice water, corresponding to two intervals of C/N peak values to the Boling and AIlerod warm periods in Europe respectively. From 10.4 ka BP, Qinghai Lake entered the Holocene and the climate was warm and a little dry. The Megathermal appeared at about 6.7 ka BP when the vegetation around the lake transformed into a forest. Between 6.3 ka BP and 4.0 ka BP, the temperature decreased and δ^13C value was controlled by the expansion of C3 plants and the retreat of C4 plants in river catchment. Since 4.0 ka BP, the climate gradually became cold and dry. From 2.1 ka BP, the cold-dry climate and human activity resulted in an abrupt increase in C/N with deceased δ^13C value; meanwhile, many coarse grains appeared in sediments.
文摘Data gathered from the 1987 National Nutrition Survey in the Philippines provided the opportunity to study the interactions among micronutrient deficiencies and undernutrition in different age groups as basis for program targeting. A randomly selected set of 50% of the households (3,200) covered by the national survey served as source of subjects. Results showed that there was a greater proportion of anemia among the undernourished (as judged by weight for age in children and weight for height in adults) (66.0%)than among the adequately nourished (54.6%) (P <0.01 ). However, the observed differencesin the proportion of serum vitamin A deficiency and of goiter among the undernourished compared to the adequately nourished were not significant. Also not significant were the observed higher prevalence of anemia among subjects with acceptable serum vitamin A levels for both adequately nourished and undernourished, and the higher prevalence of vitamin A deficiency among the non-anemics. Again there were no significant differences in the prevalence of anemia among goitrous and non-goitrous subjects, as well as the prevalence of goiter among anemic and non-anemic subjects. Neither were there significant differences in the prevalence of vitamin A deficiency among goitrous and non-goitrous subjects, but there were significant differences in the prevalence of goiter among vitamin A deficient and non-vitamin A defjcient subjects among the 7-14 years old and among pregnant and lactating women.The study concludes that at the national level, there is apparently an interaction between anemia and protein-energy undernutrition and possibly also between goiter and vitamin A deficiency in the high-risk age groups, but between anemia on the one hand and goiter and vitamin A deficiency in the other, perhaps because of clustering in the latter conditions not found in anemia and general undernutrition. These findings may be useful in targeting communities with high prevalence of micronutrient deficiencies by using prevalence of underweight and goiter as indicators for high prevalence of anemia and vitamin A deficiency, respectively
基金the National Natural Science Foun-dation of China(Grants No.41925002,42221001,42230509)received financial support from the Haihe Laboratory of Sustainable Chemical Transformations.
文摘Dissolved organic matter (DOM) is closely linked to human activities in drainage basins and plays a crucial role in maintaining ecosystem functioning and reflecting environmental quality. However, the impacts of climate and anthropogenic-induced changes on DOM in riverine systems under increasingly warming conditions still need to be better understood, particularly at large regional scales. To address this knowledge gap, we analyzed a dataset containing 386 published measurements for nine major Chinese river systems, examining dissolved organic carbon (DOC) concentrations and optical properties of chromophoric DOM (CDOM) under diverse envi- ronmental conditions, including mean air temperature, precipitation, surface solar radiation, population density, and land use. Our findings indicate that riverine DOC concentrations are significantly higher in northern China (at ∼46.8%) than in the south. This disparity is primarily due to the high input of soil erosion-induced DOM from drying-affected lands (57.0%), farmland (49.1%), and forests in the north. The high temperate and strong hydrological conditions would lead to DOM degradation easily in the riverine system in the south of China. Our study highlights that various climatic and anthropogenic factors, such as agriculture, vegetation coverage, soil erosion, surface solar radiation, and precipitation, individually or in combination, can affect DOM dynamics in river systems. Therefore, considering alterations in DOM dynamics resulting from climate and environmental changes is crucial for carbon-neutral policies and sustainable river ecosystem assessments.
文摘As Climate Change Haven Communities are constructed across the Northern Hemisphere, it will be necessary to attract two types of migrants to populate them. The first group consists of professionals and companies in eco-sustainable businesses, such as law firms, insurance companies, investment firms, banking, technological innovation, mass media, medical research and pharmaceutical research. The second group will consist of persons engaged in organic/eco-sustainable agriculture whose crops and animal husbandry practices can be transferred successfully to Climate Change Haven regions. The present research focuses on the social and economic variables that must be taken into account to insure that each new Climate Change Haven Community becomes successfully integrated with the local population and forms a cohesive, harmonious social structure. Examples are given from the United States, France, Spain, Portugal and Italy.
基金supported by the China Meteorological Administration through Grant GYHY (QX) 2007-25the 973 projectunder Grant 2005CB321703+1 种基金the Fund for Innovative Re-search Groups under Grant No. 40221503the National Natural Science Foundation of China (NSFC) project un-der Grant No. 40225013
文摘The interest in the national levels of the terrestrial carbon sink and its spatial and temporal variability with the climate and CO2 concentrations has been increasing. How the climate and the increasing atmospheric CO2 concentrations in the last century affect the carbon storage in continental China was investigated in this study by using the Modified Sheffield Dynamic Global Vegetation Model (M-SDGVM). The estimates of the M-SDGVM indicated that during the past 100 years a combination of increasing CO2 with historical temperature and precipitation variability in continental China have caused the total vegetation carbon storage to increase by 2.04 Pg C, with 2.07 Pg C gained in the vegetation biomass but 0.03 Pg C lost from the organic soil carbon matter. The increasing CO2 concentration in the 20th century is primarily responsible for the increase of the total potential vegetation carbon. These factorial experiments show that temperature variability alone decreases the total carbon storage by 1.36 Pg C and precipitation variability alone causes a loss of 1.99 Pg C. The effect of the increasing CO2 concentration alone increased the total carbon storage in the potential vegetation of China by 3.22 Pg C over the past 100 years. With the changing of the climate, the CO2 fertilization on China's ecosystems is the result of the enhanced net biome production (NBP), which is caused by a greater stimulation of the gross primary production (GPP) than the total soil-vegetation respiration. Our study also shows notable interannual and decadal variations in the net carbon exchange between the atmosphere and terrestrial ecosystems in China due to the historical climate variability.
基金supported by the project “QUAntifying Rapid Climate Change in the Arctic: regional feedbackS and large-scale impacts” (QUARCCS) funded by the German Federal Ministry for Education and Research (BMBF) under grant agreement 03F0777Aby the Helmholtz Climate Initiative REKLIM
文摘In the last decade, the atmospheric part of the climate system experienced a shift from pronounced zonal to stronger meridional flow configurations and regionally diverse changes and trends. The climate system shows complex interactions and nonlinear behavior, manifested in global warming, rising ocean temperatures and the retreat of Arctic sea ice. Although atmospheric trends and changes are observed, underlying processes are not well understood. In this study we diagnose the interaction of large-scale atmospheric eddies and the mean flow with respect to diabatic heating and cooling processes that impact on the atmospheric advection of heat. For this purpose, three-dimensional Eliassen-Palm flux theory is used in combination with an analysis of the thermodynamic equation, diabatic heating and cooling and heat advection. The most recent decades of observed winter climate are evaluated in terms of climatology and trends over the Atlantic, Arctic and Eurasia. The change of the atmospheric circulation and related processes differ between early and late winter. In early winter, the interaction of macro-turbulent eddies with the mean flow is inhibited at the Atlantic jet stream entrance region and atmospheric heat is meridionally advected into the Arctic, both related to strong high pressure anomalies. In late winter, these anomalies are inverted and a negative phase of the Arctic Oscillation with a more wavy mean flow and a tendency towards stronger meridionalization is observed.
文摘Availability of reliable knowledge on future climate change impacts, vulnerability, and adaptation are considered key elements to improving adaptive capacities and developing proper adaptation actions. The Nile Delta vulnerability to Sea Level Rise (SLR) has been the subject of a relatively significant number of studies in Egypt. The research question that this paper intends to address is “to what extent have the produced scientific knowledge supported climate change adaptation policy making, concerning inundation by SLR in the Nile Delta”. To address this question, the paper begins with a review of the literature on policy-research interaction, based on which a framework of policy-research interactions is developed. This is followed by examining generated knowledge from research and the role of such knowledge on adaptation strategy development in Egypt. It was found that the research cycle has provided ample knowledge on the Nile Delta vulnerability to inundation by SLR. Additionally, the bulk of this research work and produced knowledge have been the main source of information for climate change adaptation policymaking. The interaction between research and policymaking interest in the climate change adaptation arena in Egypt confronted several challenges that may have reduced impacts of research on policymaking. These challenges included low interest in the far future, uncertain sea level rise impacts among policymakers and the uncoordinated research and varied estimates of sea level rise impacts provided by the research cycle. Moreover, the lack of proper and effective communication channels between the two cycles may have further hindered possible interaction.
基金jointly supported by the Special Fund for the Public Welfare Industry(Meteorology)[grant number 201306026]National Natural Science Foundation of China[grant numbers41130103,41205054,and 41205051]
文摘The correlation between the Arctic Oscillation (AO) and ENSO reflects the strength of the interaction between climate systems in the low and high latitudes. Based on the long-term (501 years) control simulation of CCSM4, the authors investigated the linkage between the AO and ENSO in boreal winter. Based on the correlation coefficients between them, the authors divided the entire period into two groups: one that included the years with statistically significant correlations (G1), and the other the years with insignificant correlations (G2). in G1, the AO-related atmospheric circulation pattern resembles the ENSO-related one. The Aleutian Low (AL) acts as a bridge linking these two modes, in G2, however, the AO and ENSO signals are confined to the mid-high and mid-low latitudes, respectively. There is no significant linkage between the AO and ENSO in boreal winter, showing a low correlation coefficient. Further analysis suggests that changes in the climatological features, including the strengthened AO, the negative Pacific Decadal Oscillation phase, and the weakened AL, may be responsible for the enhanced relationships.