In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hy...In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hydraulic fractures in layered porous reservoirs with modulus contrast.The coupled hydromechanical model is first verified against an analytical solution and a laboratory experiment.Then,the fracture geometry(e.g.height,aperture,and area)and fluid pressure evolutions of multiple hydraulic fractures placed in a porous reservoir interbedded with alternating stiff and soft layers are investigated using the model.The stress and pore pressure distributions within the layered reservoir during fluid injection are also presented.The simulation results reveal that stress umbrellas are easily to form among multiple hydraulic fractures’tips when propagating in soft layers,which impedes the simultaneous height growth.It is also observed that the impediment effect of soft layer is much more significant in the fractures suppressed by the preferential growth of adjoining fractures.After that,the combined effect of in situ stress ratio and fracturing spacing on the multi-fracture height growth is presented,and the results elucidate the influence of in situ stress ratio on the height growth behavior depending on the fracture spacing.Finally,it is found that the inclusion of soft layers changes the aperture distribution of outmost and interior hydraulic fractures.The results obtained from this study may provide some insights on the understanding of hydraulic fracture height containment observed in filed.展开更多
Extended finite element method (XFEM) implementation of the interaction integral methodology for evaluating the stress intensity factors (SIF) of the mixed-mode crack problem is presented. A discontinuous function...Extended finite element method (XFEM) implementation of the interaction integral methodology for evaluating the stress intensity factors (SIF) of the mixed-mode crack problem is presented. A discontinuous function and the near-tip asymptotic function are added to the classic finite element approximation to model the crack behavior. Two-state integral by the superposition of actual and auxiliary fields is derived to calculate the SIFs. Applications of the proposed technique to the inclined centre crack plate with inclined angle from 0° to 90° and slant edge crack plate with slant angle 45°, 67.5° and 90° are presented, and comparisons are made with closed form solutions. The results show that the proposed method is convenient, accurate and computationallv efficient.展开更多
In this paper, the extended finite element method (XFEM) is adopted to analyze the interaction between a single macroscopic inclusion and a single macroscopic crack as well as that between multiple macroscopic or micr...In this paper, the extended finite element method (XFEM) is adopted to analyze the interaction between a single macroscopic inclusion and a single macroscopic crack as well as that between multiple macroscopic or microscopic defects under thermal/mechanical load. The effects of different shapes of multiple inclusions on the material thermomechanical response are investigated, and the level set method is coupled with XFEM to analyze the interaction of multiple defects. Further, the discretized extended finite element approximations in relation to thermoelastic problems of multiple defects under displacement or temperature field are given. Also, the interfaces of cracks or materials are represented by level set functions, which allow the mesh assignment not to conform to crack or material interfaces. Moreover, stress intensity factors of cracks are obtained by the interaction integral method or the M-integral method, and the stress/strain/stiffness fields are simulated in the case of multiple cracks or multiple inclusions. Finally, some numerical examples are provided to demonstrate the accuracy of our proposed method.展开更多
This paper is devoted to a new approach—the dynamic response of Soil-Structure System (SSS), the far field of which is discretized by decay or mapped elastodynamic infinite elements, based on scaling modified Bessel ...This paper is devoted to a new approach—the dynamic response of Soil-Structure System (SSS), the far field of which is discretized by decay or mapped elastodynamic infinite elements, based on scaling modified Bessel shape functions are to be calculated. These elements are appropriate for Soil-Structure Interaction problems, solved in time or frequency domain and can be treated as a new form of the recently proposed elastodynamic infinite elements with united shape functions (EIEUSF) infinite elements. Here the time domain form of the equations of motion is demonstrated and used in the numerical example. In the paper only the formulation of 2D horizontal type infinite elements (HIE) is used, but by similar techniques 2D vertical (VIE) and 2D corner (CIE) infinite elements can also be added. Continuity along the artificial boundary (the line between finite and infinite elements) is discussed as well and the application of the proposed elastodynamical infinite elements in the Finite element method is explained in brief. A numerical example shows the computational efficiency and accuracy of the proposed infinite elements, based on scaling Bessel shape functions.展开更多
Fracking is one of the kernel technologies in the remarkable shale gas revolution. The extended finite element method is used in this paper to numerically investigate the interaction between hydraulic and natural frac...Fracking is one of the kernel technologies in the remarkable shale gas revolution. The extended finite element method is used in this paper to numerically investigate the interaction between hydraulic and natural fractures, which is an important issue of the enigmatic fracture network formation in fracking. The criteria which control the opening of natural fracture and crossing of hydraulic fracture are tentatively presented. Influence factors on the interaction process are systematically analyzed, which include the approach angle, anisotropy of in-situ stress and fluid pressure profile.展开更多
The finite element method (FEM) is one of the most popular and efficient methods for computational modeling in scien- tific research and engineering . To expand its application to more complex problems, lots of new ...The finite element method (FEM) is one of the most popular and efficient methods for computational modeling in scien- tific research and engineering . To expand its application to more complex problems, lots of new FEM-based methods have been developed in recent decades.展开更多
The extended finite element method (XFEM) is a new numerical method for modeling discontinuity. Research about numerical modeling for concrete hydraulic fracturing by XFEM is explored. By building the virtual work pri...The extended finite element method (XFEM) is a new numerical method for modeling discontinuity. Research about numerical modeling for concrete hydraulic fracturing by XFEM is explored. By building the virtual work principle of the fracture problem considering water pressure on the crack surface, the governing equations of XFEM for hydraulic fracture modeling are derived. Implementation of the XFEM for hydraulic fracturing is presented. Finally, the method is verified by two examples and the advan- tages of the XFEM for hydraulic fracturing analysis are displayed.展开更多
The extended finite element method(XFEM) is a numerical method for modeling discontinuities within a classical finite element framework. Based on the algorithm of XFEM, the major factors such as integral domain factor...The extended finite element method(XFEM) is a numerical method for modeling discontinuities within a classical finite element framework. Based on the algorithm of XFEM, the major factors such as integral domain factor and mesh density which all influence the calculation accuracy of stress intensity factor(SIF) are discussed,and the proper parameters to calculate the SIF are given. The results from the case analysis demonstrate that the crack path is the most sensitive to the crack growth increment size, and the crack path is not mesh-sensitive. A reanalysis method for the XFEM has been introduced. The example presented shows that there is a significantly reduced computational cost for each iteration of crack growth achieved by using the reanalysis method and the reanalysis approach has increasing benefits as the mesh density increases or the value of crack growth increments size decreases.展开更多
The extended finite element method (XFEM) is a new numerical method for modeling discontinuity.Research about numerical modeling for concrete hydraulic fracturing by XFEM is explored.By building the virtual work princ...The extended finite element method (XFEM) is a new numerical method for modeling discontinuity.Research about numerical modeling for concrete hydraulic fracturing by XFEM is explored.By building the virtual work principle of the fracture problem considering water pressure on the crack surface,the governing equations of XFEM for hydraulic fracture modeling are derived.Implementation of the XFEM for hydraulic fracturing is presented.Finally,the method is verified by two examples and the advantages of the XFEM for hydraulic fracturing analysis are displayed.展开更多
文摘In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hydraulic fractures in layered porous reservoirs with modulus contrast.The coupled hydromechanical model is first verified against an analytical solution and a laboratory experiment.Then,the fracture geometry(e.g.height,aperture,and area)and fluid pressure evolutions of multiple hydraulic fractures placed in a porous reservoir interbedded with alternating stiff and soft layers are investigated using the model.The stress and pore pressure distributions within the layered reservoir during fluid injection are also presented.The simulation results reveal that stress umbrellas are easily to form among multiple hydraulic fractures’tips when propagating in soft layers,which impedes the simultaneous height growth.It is also observed that the impediment effect of soft layer is much more significant in the fractures suppressed by the preferential growth of adjoining fractures.After that,the combined effect of in situ stress ratio and fracturing spacing on the multi-fracture height growth is presented,and the results elucidate the influence of in situ stress ratio on the height growth behavior depending on the fracture spacing.Finally,it is found that the inclusion of soft layers changes the aperture distribution of outmost and interior hydraulic fractures.The results obtained from this study may provide some insights on the understanding of hydraulic fracture height containment observed in filed.
基金Projects(41172244,41072224) supported by the National Natural Science Foundation of ChinaProject(2009GGJS-037) supported by the Foundation of Youths Key Teacher by the Henan Educational Committee,China
文摘Extended finite element method (XFEM) implementation of the interaction integral methodology for evaluating the stress intensity factors (SIF) of the mixed-mode crack problem is presented. A discontinuous function and the near-tip asymptotic function are added to the classic finite element approximation to model the crack behavior. Two-state integral by the superposition of actual and auxiliary fields is derived to calculate the SIFs. Applications of the proposed technique to the inclined centre crack plate with inclined angle from 0° to 90° and slant edge crack plate with slant angle 45°, 67.5° and 90° are presented, and comparisons are made with closed form solutions. The results show that the proposed method is convenient, accurate and computationallv efficient.
基金supported by the National Natural Science Foundation of China (Grants 11471262, 50976003, 51136005)
文摘In this paper, the extended finite element method (XFEM) is adopted to analyze the interaction between a single macroscopic inclusion and a single macroscopic crack as well as that between multiple macroscopic or microscopic defects under thermal/mechanical load. The effects of different shapes of multiple inclusions on the material thermomechanical response are investigated, and the level set method is coupled with XFEM to analyze the interaction of multiple defects. Further, the discretized extended finite element approximations in relation to thermoelastic problems of multiple defects under displacement or temperature field are given. Also, the interfaces of cracks or materials are represented by level set functions, which allow the mesh assignment not to conform to crack or material interfaces. Moreover, stress intensity factors of cracks are obtained by the interaction integral method or the M-integral method, and the stress/strain/stiffness fields are simulated in the case of multiple cracks or multiple inclusions. Finally, some numerical examples are provided to demonstrate the accuracy of our proposed method.
文摘This paper is devoted to a new approach—the dynamic response of Soil-Structure System (SSS), the far field of which is discretized by decay or mapped elastodynamic infinite elements, based on scaling modified Bessel shape functions are to be calculated. These elements are appropriate for Soil-Structure Interaction problems, solved in time or frequency domain and can be treated as a new form of the recently proposed elastodynamic infinite elements with united shape functions (EIEUSF) infinite elements. Here the time domain form of the equations of motion is demonstrated and used in the numerical example. In the paper only the formulation of 2D horizontal type infinite elements (HIE) is used, but by similar techniques 2D vertical (VIE) and 2D corner (CIE) infinite elements can also be added. Continuity along the artificial boundary (the line between finite and infinite elements) is discussed as well and the application of the proposed elastodynamical infinite elements in the Finite element method is explained in brief. A numerical example shows the computational efficiency and accuracy of the proposed infinite elements, based on scaling Bessel shape functions.
基金supported by the National Natural Science Foundation of China (Grant No. 11372157)the Special Research Grant for Doctor Discipline by Ministry of Education of China (Grant No. 20120002110075)the Foundation for the Author of National Excellent Doctoral Dissertation of China (FANEDD) (Grant No. 201326)
文摘Fracking is one of the kernel technologies in the remarkable shale gas revolution. The extended finite element method is used in this paper to numerically investigate the interaction between hydraulic and natural fractures, which is an important issue of the enigmatic fracture network formation in fracking. The criteria which control the opening of natural fracture and crossing of hydraulic fracture are tentatively presented. Influence factors on the interaction process are systematically analyzed, which include the approach angle, anisotropy of in-situ stress and fluid pressure profile.
文摘The finite element method (FEM) is one of the most popular and efficient methods for computational modeling in scien- tific research and engineering . To expand its application to more complex problems, lots of new FEM-based methods have been developed in recent decades.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 50539030, 50609004)the National Basic Research Program of China ("973" Program) (Grant No. 2007CB714104)
文摘The extended finite element method (XFEM) is a new numerical method for modeling discontinuity. Research about numerical modeling for concrete hydraulic fracturing by XFEM is explored. By building the virtual work principle of the fracture problem considering water pressure on the crack surface, the governing equations of XFEM for hydraulic fracture modeling are derived. Implementation of the XFEM for hydraulic fracturing is presented. Finally, the method is verified by two examples and the advan- tages of the XFEM for hydraulic fracturing analysis are displayed.
基金the National Basic Research Program(973) of China(No.2011CB013505)the National Natural Science Foundation of China(No.51279100)
文摘The extended finite element method(XFEM) is a numerical method for modeling discontinuities within a classical finite element framework. Based on the algorithm of XFEM, the major factors such as integral domain factor and mesh density which all influence the calculation accuracy of stress intensity factor(SIF) are discussed,and the proper parameters to calculate the SIF are given. The results from the case analysis demonstrate that the crack path is the most sensitive to the crack growth increment size, and the crack path is not mesh-sensitive. A reanalysis method for the XFEM has been introduced. The example presented shows that there is a significantly reduced computational cost for each iteration of crack growth achieved by using the reanalysis method and the reanalysis approach has increasing benefits as the mesh density increases or the value of crack growth increments size decreases.
基金Supported by the National Natural Science Foundation of China (Grant Nos.50539030,50609004)the National Basic Research Program of China ("973" Program) (Grant No.2007CB714104)
文摘The extended finite element method (XFEM) is a new numerical method for modeling discontinuity.Research about numerical modeling for concrete hydraulic fracturing by XFEM is explored.By building the virtual work principle of the fracture problem considering water pressure on the crack surface,the governing equations of XFEM for hydraulic fracture modeling are derived.Implementation of the XFEM for hydraulic fracturing is presented.Finally,the method is verified by two examples and the advantages of the XFEM for hydraulic fracturing analysis are displayed.