Range is an important factor to the design of autonomous underwater vehicles (AUVs), while drag reduction efforts are pursued, the investigation of body-propeller interaction is another vital consideration. We present...Range is an important factor to the design of autonomous underwater vehicles (AUVs), while drag reduction efforts are pursued, the investigation of body-propeller interaction is another vital consideration. We present a numerical and experimental study of the hull-propeller interaction for deeply submerged underwater vehicles, using a proportional-integral- derivative (PID) controller method to estimate self-propulsion point in CFD environment. The hydrodynamic performance of hull and propeller at the balance state when the AUV sails at a fixed depth is investigated, using steady RANS solver of Star-CCM+. The proposed steady RANS solver takes only hours to reach a reasonable solution. It is more time efficient than unsteady simulations which takes days or weeks, as well as huge consumption of computing resources. Explorer 1000, a long range AUV developed by Shenyang Institute of Automation, Chinese Academy of Sciences, was studied as an object, and self-propulsion point, thrust deduction, wake fraction and hull efficiency were analyzed by using the proposed RANS method. Behind-hull performance of the selected propeller MAU4-40, as well as the hull-propeller interaction, was obtained from the computed hydrodynamic forces. The numerical results are in good qualitative and quantitative agreement with the experimental results obtained in the Qiandao Lake of Zhejiang province, China.展开更多
Reducing the fuel consumption of ships presents both economic and environmental gains. Although in the past decades,extensive studies were carried out on the flow around ship hull, it is still difficult to calculate t...Reducing the fuel consumption of ships presents both economic and environmental gains. Although in the past decades,extensive studies were carried out on the flow around ship hull, it is still difficult to calculate the flow around the hull while considering propeller interaction. In this paper, the viscous flow around modern ship hulls is computed considering propeller action. In this analysis, the numerical investigation of flow around the ship is combined with propeller theory to simulate the hull-propeller interaction. Various longitudinal positions of the rudder are also analyzed to determine the effect of rudder position on propeller efficiency. First, a numerical study was performed around a bare hull using Shipflow computational fluid dynamics(CFD) code to determine free-surface wave elevation and resistance components.A zonal approach was applied to successively incorporate Bpotential flow solver^ in the region outside the boundary layer and wake, Bboundary layer solver^ in the thin boundary layer region near the ship hull, and BNavier-Stokes solver^in the wake region. Propeller open water characteristics were determined using an open-source MATLAB code Open Prop, which is based on the lifting line theory, for the moderately loaded propeller. The obtained open water test results were specified in the flow module of Shipflow for self-propulsion tests. The velocity field behind the ship was recalculated into an effective wake and given to the propeller code that calculates the propeller load. Once the load was known, it was transferred to the Reynolds-averaged Navier-Stokes(RANS) solver to simulate the propeller action. The interaction between the hull and propeller with different rudder positions was then predicted to improve the propulsive efficiency.展开更多
Correct evaluation of rudder performance is a key issue in assessing ship maneuverability.This paper presents a simplified approach based on a viscous flow solver to address propeller and rudder interactions.Viscous f...Correct evaluation of rudder performance is a key issue in assessing ship maneuverability.This paper presents a simplified approach based on a viscous flow solver to address propeller and rudder interactions.Viscous flow solvers have been applied to this type of problems,but the large computational requests limit(or even prevent)their application at a preliminary ship design stage.Based on this idea,a simplified approach to include the propeller effect in front of the rudder is considered to speed up the solution.Based on the concept of body forces,this approach enables sufficiently fast computation for a preliminary ship design stage,therebymaintaining its reliability.To define the limitations of the proposed procedure,an extensive analysis of the simplified method is performed and the results are compared with experimental data presented in the literature.Initially,the reported results show the capability of the body-force approach to represent the inflow field to the rudder without the full description of the propeller,also with regard to the complex bollard pull condition.Consequently,the rudder forces are satisfactorily predicted at least with regard to the lift force.However,the drag force evaluation ismore problematic and causes higher discrepancies.Nevertheless,these discrepancies may be accepted due to their lower influence on the overall ship maneuverability performance.展开更多
Hull/propeller interaction is of great importance for powering performance prediction. The features of hull/propeller interaction of a submarine model with a high-skew five blade propeller in submergence and near surf...Hull/propeller interaction is of great importance for powering performance prediction. The features of hull/propeller interaction of a submarine model with a high-skew five blade propeller in submergence and near surface conditions are numerically simulated. The effect of propeller rotation is simulated by the sliding mesh technique. Free surface is captured by the volume of fluid (VOF) method. Computed results including resistance, thrust, torque and self-propulsion factor are compared with experimental data. It shows fairly good agreement. The resistance and wave pattern of the model at different depths of submergence are computed. And the thrust, torque and self-propulsion factor of the model in submergence and near surface condition are compared to analyze the effect of free surface on self-propulsion performance. The results indicate that free surface has more influence on resistance than that on self-propulsion factors.展开更多
By applying a CFD tool to solve the RANS equations, the viscous flow around a model of hull-rudder system towed along a bank in shallow water is numerically simulated. Hydrodynamic forces and moments acting on the shi...By applying a CFD tool to solve the RANS equations, the viscous flow around a model of hull-rudder system towed along a bank in shallow water is numerically simulated. Hydrodynamic forces and moments acting on the ship are calculated for different ship-bank distances and rudder angles. A container ship, KCS, is taken as an example for the numerical study. Under the assumption of low ship speed, the influences of free surface elevation and ship squat are assumed to be negligible. Based on the calculation results, the hydrodynamic interaction among the hull, rudder and bank is analyzed.展开更多
Ship maneuvering in waves includes the performance of ship resistance, seakeeping, propulsion, and maneuverability. It is a complex hydrodynamic problem with the interaction of many factors. With the purpose of direct...Ship maneuvering in waves includes the performance of ship resistance, seakeeping, propulsion, and maneuverability. It is a complex hydrodynamic problem with the interaction of many factors. With the purpose of directly predicting the behavior of ship maneuvering in waves, a CFD solver named naoe-FOAM-SJTU is developed by the Computational Marine Hydrodynamics Lab(CMHL) in Shanghai Jiao Tong University. The solver is based on open source platform OpenFOAM and has introduced dynamic overset grid technology to handle complex ship hull-propeller-rudder motion system. Maneuvering control module based on feedback control mechanism is also developed to accurately simulate corresponding motion behavior of free running ship maneuver. Inlet boundary wavemaker and relaxation zone technique is used to generate desired waves. Based on the developed modules, unsteady Reynolds-averaged Navier-Stokes(RANS) computations are carried out for several validation cases of free running ship maneuver in waves including zigzag, turning circle, and course keeping maneuvers. The simulation results are compared with available benchmark data. Ship motions, trajectories, and other maneuvering parameters are consistent with available experimental data, which indicate that the present solver can be suitable and reliable in predicting the performance of ship maneuvering in waves. Flow visualizations, such as free surface elevation, wake flow, vortical structures, are presented to explain the hydrodynamic performance of ship maneuvering in waves. Large flow separation can be observed around propellers and rudders. It is concluded that RANS approach is not accurate enough for predicting ship maneuvering in waves with large flow separations and detached eddy simulation(DES) or large eddy simulation(LES) computations are required to improve the prediction accuracy.展开更多
This paper presents a numerical investigation of ship manoeuvring under the combined effect of bank and propeller. The incompressible turbulent flow with free surface around the self-propelled hull form is simulated u...This paper presents a numerical investigation of ship manoeuvring under the combined effect of bank and propeller. The incompressible turbulent flow with free surface around the self-propelled hull form is simulated using a commercial CFD software (ANSYS-FLUENT). In order to estimate the influence of the bank-propeller effect on the hydrodynamic forces acting on the ship, volume forces representing the propeller are added to Navier-Stokes equations. The numerical simulations are carried out using the equivalent of experiment conditions. The validation of the CFD model is performed by comparing the numerical results to the availa- ble experimental data. For this investigation, the impact of Ship-Bank distance and ship speed on the bank effect are tested with and without propeller. An additional parameter concerning the advance ratio of the propeller is also tested.展开更多
In this paper, the unsteady cavitating turbulent flow around a marine propeller is simulated based on the unsteady Reynolds averaged Navier-Stokes(URANS) with emphasis on the hull-propeller interaction by an integral ...In this paper, the unsteady cavitating turbulent flow around a marine propeller is simulated based on the unsteady Reynolds averaged Navier-Stokes(URANS) with emphasis on the hull-propeller interaction by an integral calculation approach, which means the propeller and hull are treated as a whole when the cavitating flow is calculated. The whole calculational domain is split to an inner rotating domain containing a propeller and an outer domain containing a hull. And the two split sections are connected together in ANSYS CFX by using the GGI interfaces and the transient rotor stator frame change/mixing model. The alternate rotation model is employed for the advection term in the momentum equations in order to reduce the numerical error. Comparison of predictions with measurements shows that the propeller thrust coefficient can be predicted satisfactorily. The unsteady cavitating flow around the propeller behind the ship hull wake shows quasi-periodic features including cavity inception, growth and shrinking. These features are effectively reproduced in the simulations which compare well to available experimental data. In addition, significant pressure fluctuations on the ship hull surface induced by the unsteady propeller cavitation are compared with experimental data at monitoring points on the hull surface. The predicted amplitudes of the first components corresponding to the first blade passing frequencies match well with the experimental data. The maximum error between the predictions and the experimental data for the pressure pulsations is around 8%, which is acceptable in most engineering applications.展开更多
The Reynolds number effect of the interaction between the three-dimen-sional ship stern with multi-propellers and its corresponding hydrodynamic performance under four different orders of the Reynolds number (includin...The Reynolds number effect of the interaction between the three-dimen-sional ship stern with multi-propellers and its corresponding hydrodynamic performance under four different orders of the Reynolds number (including the full scale Reynolds number 1. 67×109 and the model scale Reynolds number 1. 67×106) are numerically investigated in this paper. This approach to propeller-hull interaction is based on three-di-mensional unsteady RANS equations coupled with a propeller performance program in an interactive and iterative manner to predict the combined flow field and hydrodynamic per- formance of propeller. By comparing the computed effective wake distribution and fraction under four different orders of the Reynolds number, the scale effect of nominal and effec-tive wake distribution is examined and discussed.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.41806122)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA11040102)+2 种基金the State Key Laboratory of Robotics of China(Grant No.2017-Z08)Youth Innovation Promotion Association,CASJiang Xinsong Innovation Fund
文摘Range is an important factor to the design of autonomous underwater vehicles (AUVs), while drag reduction efforts are pursued, the investigation of body-propeller interaction is another vital consideration. We present a numerical and experimental study of the hull-propeller interaction for deeply submerged underwater vehicles, using a proportional-integral- derivative (PID) controller method to estimate self-propulsion point in CFD environment. The hydrodynamic performance of hull and propeller at the balance state when the AUV sails at a fixed depth is investigated, using steady RANS solver of Star-CCM+. The proposed steady RANS solver takes only hours to reach a reasonable solution. It is more time efficient than unsteady simulations which takes days or weeks, as well as huge consumption of computing resources. Explorer 1000, a long range AUV developed by Shenyang Institute of Automation, Chinese Academy of Sciences, was studied as an object, and self-propulsion point, thrust deduction, wake fraction and hull efficiency were analyzed by using the proposed RANS method. Behind-hull performance of the selected propeller MAU4-40, as well as the hull-propeller interaction, was obtained from the computed hydrodynamic forces. The numerical results are in good qualitative and quantitative agreement with the experimental results obtained in the Qiandao Lake of Zhejiang province, China.
基金the Committee for Advanced Studies and Research(CASR)Bangladesh University of Engineering and Technology for granting research fundsub-project CP No.2084 of Department of Naval Architecture and Marine Engineering under Higher Education Quality Enhancement Project(HEQEP),UGC,Ministry of Education,Govt.of Bangladesh for providing necessary research facilities during the current research work
文摘Reducing the fuel consumption of ships presents both economic and environmental gains. Although in the past decades,extensive studies were carried out on the flow around ship hull, it is still difficult to calculate the flow around the hull while considering propeller interaction. In this paper, the viscous flow around modern ship hulls is computed considering propeller action. In this analysis, the numerical investigation of flow around the ship is combined with propeller theory to simulate the hull-propeller interaction. Various longitudinal positions of the rudder are also analyzed to determine the effect of rudder position on propeller efficiency. First, a numerical study was performed around a bare hull using Shipflow computational fluid dynamics(CFD) code to determine free-surface wave elevation and resistance components.A zonal approach was applied to successively incorporate Bpotential flow solver^ in the region outside the boundary layer and wake, Bboundary layer solver^ in the thin boundary layer region near the ship hull, and BNavier-Stokes solver^in the wake region. Propeller open water characteristics were determined using an open-source MATLAB code Open Prop, which is based on the lifting line theory, for the moderately loaded propeller. The obtained open water test results were specified in the flow module of Shipflow for self-propulsion tests. The velocity field behind the ship was recalculated into an effective wake and given to the propeller code that calculates the propeller load. Once the load was known, it was transferred to the Reynolds-averaged Navier-Stokes(RANS) solver to simulate the propeller action. The interaction between the hull and propeller with different rudder positions was then predicted to improve the propulsive efficiency.
文摘Correct evaluation of rudder performance is a key issue in assessing ship maneuverability.This paper presents a simplified approach based on a viscous flow solver to address propeller and rudder interactions.Viscous flow solvers have been applied to this type of problems,but the large computational requests limit(or even prevent)their application at a preliminary ship design stage.Based on this idea,a simplified approach to include the propeller effect in front of the rudder is considered to speed up the solution.Based on the concept of body forces,this approach enables sufficiently fast computation for a preliminary ship design stage,therebymaintaining its reliability.To define the limitations of the proposed procedure,an extensive analysis of the simplified method is performed and the results are compared with experimental data presented in the literature.Initially,the reported results show the capability of the body-force approach to represent the inflow field to the rudder without the full description of the propeller,also with regard to the complex bollard pull condition.Consequently,the rudder forces are satisfactorily predicted at least with regard to the lift force.However,the drag force evaluation ismore problematic and causes higher discrepancies.Nevertheless,these discrepancies may be accepted due to their lower influence on the overall ship maneuverability performance.
文摘Hull/propeller interaction is of great importance for powering performance prediction. The features of hull/propeller interaction of a submarine model with a high-skew five blade propeller in submergence and near surface conditions are numerically simulated. The effect of propeller rotation is simulated by the sliding mesh technique. Free surface is captured by the volume of fluid (VOF) method. Computed results including resistance, thrust, torque and self-propulsion factor are compared with experimental data. It shows fairly good agreement. The resistance and wave pattern of the model at different depths of submergence are computed. And the thrust, torque and self-propulsion factor of the model in submergence and near surface condition are compared to analyze the effect of free surface on self-propulsion performance. The results indicate that free surface has more influence on resistance than that on self-propulsion factors.
基金Project supported by the National Natural Science Foundation of China(Grant No.51061130548)
文摘By applying a CFD tool to solve the RANS equations, the viscous flow around a model of hull-rudder system towed along a bank in shallow water is numerically simulated. Hydrodynamic forces and moments acting on the ship are calculated for different ship-bank distances and rudder angles. A container ship, KCS, is taken as an example for the numerical study. Under the assumption of low ship speed, the influences of free surface elevation and ship squat are assumed to be negligible. Based on the calculation results, the hydrodynamic interaction among the hull, rudder and bank is analyzed.
基金the National Natural Science Foundation of China (51809169,51879159,51490675,11432009, 51579145)Chang Jiang Scholars Program (T2014099)+2 种基金Shanghai Excellent Academic Leaders Program (17XD1402300)Program for Professor of Special Appointment (Eastern Scholar)at Shanghai Institutions of Higher Learning (2013022)Innovative Special Project of Numerical Tank of Ministry of Industry and Information Technology of China (2016-23/09).
文摘Ship maneuvering in waves includes the performance of ship resistance, seakeeping, propulsion, and maneuverability. It is a complex hydrodynamic problem with the interaction of many factors. With the purpose of directly predicting the behavior of ship maneuvering in waves, a CFD solver named naoe-FOAM-SJTU is developed by the Computational Marine Hydrodynamics Lab(CMHL) in Shanghai Jiao Tong University. The solver is based on open source platform OpenFOAM and has introduced dynamic overset grid technology to handle complex ship hull-propeller-rudder motion system. Maneuvering control module based on feedback control mechanism is also developed to accurately simulate corresponding motion behavior of free running ship maneuver. Inlet boundary wavemaker and relaxation zone technique is used to generate desired waves. Based on the developed modules, unsteady Reynolds-averaged Navier-Stokes(RANS) computations are carried out for several validation cases of free running ship maneuver in waves including zigzag, turning circle, and course keeping maneuvers. The simulation results are compared with available benchmark data. Ship motions, trajectories, and other maneuvering parameters are consistent with available experimental data, which indicate that the present solver can be suitable and reliable in predicting the performance of ship maneuvering in waves. Flow visualizations, such as free surface elevation, wake flow, vortical structures, are presented to explain the hydrodynamic performance of ship maneuvering in waves. Large flow separation can be observed around propellers and rudders. It is concluded that RANS approach is not accurate enough for predicting ship maneuvering in waves with large flow separations and detached eddy simulation(DES) or large eddy simulation(LES) computations are required to improve the prediction accuracy.
文摘This paper presents a numerical investigation of ship manoeuvring under the combined effect of bank and propeller. The incompressible turbulent flow with free surface around the self-propelled hull form is simulated using a commercial CFD software (ANSYS-FLUENT). In order to estimate the influence of the bank-propeller effect on the hydrodynamic forces acting on the ship, volume forces representing the propeller are added to Navier-Stokes equations. The numerical simulations are carried out using the equivalent of experiment conditions. The validation of the CFD model is performed by comparing the numerical results to the availa- ble experimental data. For this investigation, the impact of Ship-Bank distance and ship speed on the bank effect are tested with and without propeller. An additional parameter concerning the advance ratio of the propeller is also tested.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11772239,51822903 and 91752105)the Natural Science Foundation of Hubei Province(Grant Nos.2017CFA048,2018CFA010)
文摘In this paper, the unsteady cavitating turbulent flow around a marine propeller is simulated based on the unsteady Reynolds averaged Navier-Stokes(URANS) with emphasis on the hull-propeller interaction by an integral calculation approach, which means the propeller and hull are treated as a whole when the cavitating flow is calculated. The whole calculational domain is split to an inner rotating domain containing a propeller and an outer domain containing a hull. And the two split sections are connected together in ANSYS CFX by using the GGI interfaces and the transient rotor stator frame change/mixing model. The alternate rotation model is employed for the advection term in the momentum equations in order to reduce the numerical error. Comparison of predictions with measurements shows that the propeller thrust coefficient can be predicted satisfactorily. The unsteady cavitating flow around the propeller behind the ship hull wake shows quasi-periodic features including cavity inception, growth and shrinking. These features are effectively reproduced in the simulations which compare well to available experimental data. In addition, significant pressure fluctuations on the ship hull surface induced by the unsteady propeller cavitation are compared with experimental data at monitoring points on the hull surface. The predicted amplitudes of the first components corresponding to the first blade passing frequencies match well with the experimental data. The maximum error between the predictions and the experimental data for the pressure pulsations is around 8%, which is acceptable in most engineering applications.
文摘The Reynolds number effect of the interaction between the three-dimen-sional ship stern with multi-propellers and its corresponding hydrodynamic performance under four different orders of the Reynolds number (including the full scale Reynolds number 1. 67×109 and the model scale Reynolds number 1. 67×106) are numerically investigated in this paper. This approach to propeller-hull interaction is based on three-di-mensional unsteady RANS equations coupled with a propeller performance program in an interactive and iterative manner to predict the combined flow field and hydrodynamic per- formance of propeller. By comparing the computed effective wake distribution and fraction under four different orders of the Reynolds number, the scale effect of nominal and effec-tive wake distribution is examined and discussed.