期刊文献+
共找到1,689篇文章
< 1 2 85 >
每页显示 20 50 100
SOIL PILE INTERACTION UNDER STATIC, DYNAMIC AND CYCLIC LATERAL LOADS AND A PROPOSAL OF p-y CURVE FORMULA 被引量:1
1
作者 Gao, Ming Chen, Jinzhen +1 位作者 Zhen, Guofang Fang, Huolang 《China Ocean Engineering》 SCIE EI 1989年第3期259-270,共12页
In this paper, the studies on soil-pile interaction behaviors in saturated sands under static, dynamic and cyclic lateral loads by model testing are described. By comparing with the field test results for piles in sof... In this paper, the studies on soil-pile interaction behaviors in saturated sands under static, dynamic and cyclic lateral loads by model testing are described. By comparing with the field test results for piles in soft sandy clay, a formula of p-y curves based on constitutive relationship of soils applicable for both sandy and soft clays is proposed. Good agreements are obtained in comparison with the field test results performed by other investigators abroad. A p-y hysteresis curve formula based on the modified Masing's doubling criterion is also proposed, and the results are in satisfactory agreement with field test results. 展开更多
关键词 FOUNDATIONS soil Structure interaction Mathematical Models piles Loading soilS Structural Analysis Dynamic Response
下载PDF
Numerical Analysis of Interaction Between Pile-Supported Pier and Bank Slope 被引量:5
2
作者 WANG Nianxiang(王年香) 《China Ocean Engineering》 SCIE EI 2001年第1期117-128,共12页
Two and three-dimensional finite element analysis programs for pile-soil interaction are compiled. Duncan-Chang's Model is used. The construction sequence of the pier is modeled. The pile-soil interface element is... Two and three-dimensional finite element analysis programs for pile-soil interaction are compiled. Duncan-Chang's Model is used. The construction sequence of the pier is modeled. The pile-soil interface element is used. The influence of the combination type of piles on the deformation of bank slope and pile behaviour is analyzed. Different designs of a pile-supported pier are compared thoroughly. Calculation results show that the stresses and displacements of the pile are directly related to the distance from the bank slope and the direction of inclination. An inclined prop pile set in the rear platform would remarkably reduce the stresses of piles and the displacement of the pier. 展开更多
关键词 interaction pile-supported pier bank slope numerical analysis
下载PDF
Analysis of Interaction Factors between Two Piles in Layered Soils
3
作者 曹明 陈龙珠 《Journal of Donghua University(English Edition)》 EI CAS 2011年第3期255-260,共6页
A rigorous analytical method is presented, which takes into account the pile stiffening effects, using the theory of the transfer matrix-bottom rigidity for calculating the interaction factor between two identical pil... A rigorous analytical method is presented, which takes into account the pile stiffening effects, using the theory of the transfer matrix-bottom rigidity for calculating the interaction factor between two identical piles in multi-layered soils subjected to vertical loads. Following the technique proposed by Muki and Sternberg, the problem is decomposed into extended soil layers and two fictitious piles characterized respectively by Young's moduli of the layered soils and those of the differences between the piles and the layered soils. The unknown axial forces along fictitious piles are determined by solving a Fredholm integral equation of the second kind, which imposes the compatibility condition that the axial strains of the fictitious piles are equal to those corresponding to the centroidal axes of the extended layered soils. The real pile displacements can be calculated based on the determined fictitious pile forces, and finally, the desired pile interaction factors may be obtained. Selected results from parametrical studies are presented to confirm the validity of the proposed approach and portray the influence of the governing parameters on the pile interaction. 展开更多
关键词 fictitious pile vertical load interaction factor analytical solution layered soils
下载PDF
Numerical Study of the Interaction between a Reinforced Concrete Pile and Soil
4
作者 N. M. Nde D. Fokwa +2 位作者 M. Mbessa T. T. Tamo C. Pettang 《Open Journal of Civil Engineering》 2020年第3期259-269,共11页
<span style="font-family:Verdana;">This paper proposes a numerical simulation of the mechanical behavior of a reinforced concrete pile foundation under an axial load. In fact, the foundation of a struc... <span style="font-family:Verdana;">This paper proposes a numerical simulation of the mechanical behavior of a reinforced concrete pile foundation under an axial load. In fact, the foundation of a structure represents the essential structural part of it, because it ensures its bearing capacity. Among the types of foundation, </span><span style="font-family:Verdana;">deep</span><span style="font-family:Verdana;"> foundation is the one for which from a mechanical point of view, the justification takes into account the isolated or combined effects of base resistance offered by the soil bed and lateral friction at the soil-pile interface;the latter being the consequence of a large contact surface with the surrounding soil;hence the need to study the interaction between the soil and the pile in service, in order to highlight the characteristics of soil which influence the mechanical behavior of pile and therefore the stability of the structure. In this study,</span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">the reinforced concrete pile is supposed to be </span><span style="font-family:Verdana;">elastic,</span><span style="font-family:Verdana;"> and characterized by a young’s modulus (</span><i><span style="font-family:Verdana;">E</span></i><span style="font-family:Verdana;">) and a Poisson’s ratio (</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;">ν</span></i></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">). The soil obeys to a Camclay model characterized by </span><span style="font-family:Verdana;">a cohesion</span><span style="font-family:Verdana;"> (</span><i><span style="font-family:Verdana;">c</span></i><span style="font-family:Verdana;">), an initial voids ratio (</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;">e</span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><sub><span style="font-family:Verdana;">0</span></sub></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">), shearing resistance angle (</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;">φ</span></i></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">) </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> a pre-consolidation pressure (</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;">P</span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><sub><span style="font-family:Verdana;">0</span></sub></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">). A joint model with a </span><span style="font-family:Verdana;">Mohr Coulomb</span><span style="font-family:Verdana;"> behavior characterizes the soil-pile interface. The loading is carrying out by imposing a vertical monotonic displacement at the head of </span><span style="font-family:Verdana;">pile</span><span style="font-family:Verdana;">. The results in terms of stress and displacement show that the bearing capacity of the pile is influenced by various soils characteristics, it appears that the vertical stress and the force mobilized at rupture increase when the initial pre_consolidation pressure, the cohesion </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> the internal friction angle of soil increase;and when the initial soil voids index decreases.</span></span></span></span> 展开更多
关键词 PILE soil interaction Numerical Simulation Pre_Consolidation Pressure Voids Ratio COHESION Internal Friction Angle
下载PDF
Soil Plug Effect Prediction and Pile Driveability Analysis for Large-Diameter Steel Piles in Ocean Engineering 被引量:16
5
作者 刘润 闫澍旺 李志华 《China Ocean Engineering》 SCIE EI 2009年第1期107-118,共12页
Long steel piles with large diameters have been more widely used in the field of ocean engineering. Owing to the pile with a large diameter, soil plug development during pile driving has great influences on pile drive... Long steel piles with large diameters have been more widely used in the field of ocean engineering. Owing to the pile with a large diameter, soil plug development during pile driving has great influences on pile driveability and bearing capacity. The response of soil plug developed inside the open-ended pipe pile during the dynamic condition of pile-driving is different from the response under the static condition of loading during service. This paper addresses the former aspect. A numerical procedure for soil plug effect prediction and pile driveabihty analysis is proposed and described. By taking into consideration of the pile dimension effect on side and tip resistance, this approach introduces a dimensional coefficient to the conventional static eqnihbrium equations for the plug differential unit and proposes an improved static equity method for the plug effect prediction. At the same time, this approach introduces a simplified model by use of one-dimensional stress wave equation to simulate the interaction between soil plug and pile inner wall. The proposed approach has been applied in practical engineering analyses. Results show that the calculated plug effect and pile driveabihty based on the proposed approach agree well with the observed data. 展开更多
关键词 large diameter steel piles soil plug plug effect static equity method interaction between the plug and pile inner wall driveability analysis
下载PDF
Stereo particle image velocimetry measurement of 3D soil deformation around laterally loaded pile in sand 被引量:6
6
作者 袁炳祥 谌文武 +2 位作者 姜彤 汪亦显 陈科平 《Journal of Central South University》 SCIE EI CAS 2013年第3期791-798,共8页
A developed stereo particle image velocimetry(stereo-PIV) system was proposed to measure three-dimensional(3D) soil deformation around a laterally loaded pile in sand.The stereo-PIV technique extended 2D measurement t... A developed stereo particle image velocimetry(stereo-PIV) system was proposed to measure three-dimensional(3D) soil deformation around a laterally loaded pile in sand.The stereo-PIV technique extended 2D measurement to 3D based on a binocular vision model,where two cameras with a well geometrical setting were utilized to image the same object simultaneously.This system utilized two open software packages and some simple programs in MATLAB,which can easily be adjusted to meet user needs at a low cost.The failure planes form an angle with the horizontal line,which are measured at 27°-29°,approximately three-fourths of the frictional angle of soil.The edge of the strain wedge formed in front of the pile is an arc,which is slightly different from the straight line reported in the literature.The active and passive influence zones are about twice and six times of the diameter of the pile,respectively.The test demonstrates the good performance and feasibility of this stereo-PIV system for more advanced geotechnical testing. 展开更多
关键词 particle image velocimetry digital image correlation stereo particle image velocimetry laterally loaded pile scaledmodel 3D soil deformation soil-structural interaction
下载PDF
3D finite element analysis on pile-soil interaction of passive pile group 被引量:6
7
作者 赵明华 刘敦平 +1 位作者 张玲 蒋冲 《Journal of Central South University of Technology》 EI 2008年第1期75-80,共6页
The interaction between pile and soft soil of the passive pile group subjected to soil movement was analyzed with three-dimensional finite element model by using ANSYS software. The soil was assumed to be elastic-plas... The interaction between pile and soft soil of the passive pile group subjected to soil movement was analyzed with three-dimensional finite element model by using ANSYS software. The soil was assumed to be elastic-plastic complying with the Drucker-Prager yield criterion in the analysis. The large displacement of soil was considered and contact elements were used to evaluate the interaction between pile and soil. The influences of soil depth of layer and number of piles on the lateral pressure of the pile were investigated, and the lateral pressure distributions on the (2×1) pile group and on the (2×2) pile group were compared. The results show that the adjacent surcharge may result in significant lateral movement of the soft soil and considerable pressure on the pile. The pressure acting on the row near the surcharge is higher than that on the other row, due to the "barrier" and arching effects in pile groups. The passive load and its distribution should be taken into account in the design of the passive piles. 展开更多
关键词 pile-soil interaction passive pile group soft soil lateral pressure DEFORMATION 3D finite element analysis
下载PDF
Aero-Hydro-Elastic-Servo Modeling and Dynamic Response Analysis of A Monopile Offshore Wind Turbine Under Different Operating Scenarios
8
作者 XIE Shuang-yi GAO Jian +3 位作者 LI Yong-ran JIANG Shu-xin ZHANG Cheng-lin HE Jiao 《China Ocean Engineering》 SCIE EI CSCD 2024年第3期379-393,共15页
This paper constructs a coupled aero-hydro-elastic-servo simulation framework for a monopile offshore wind turbine(OWT).In this framework,a detailed multi-body dynamics model of the monopile OWT including the gearbox,... This paper constructs a coupled aero-hydro-elastic-servo simulation framework for a monopile offshore wind turbine(OWT).In this framework,a detailed multi-body dynamics model of the monopile OWT including the gearbox,blades,tower and other components(nacelle,hub,bedplate,etc.)has been explicitly established.The effects of pile−soil interaction,controller and operational conditions on the turbine dynamic responses are studied systematically in time domain and frequency domain.The results show that(1)a comprehensive drivetrain model has the capability to provide a more precise representation of the complex dynamic characteristics exhibited by drivetrain components,which can be used as the basis for further study on the dynamic characteristics of the drivetrain.(2)The pile−soil interaction can influence the wind turbine dynamic responses,particularly under the parked condition.(3)The effect of the pile−soil interaction on tower responses is more significant than that on blade responses.(4)The use of the controller can substantially affect the rotor characteristics,which in turn influences the turbine dynamic responses.(5)The tower and blade displacements under the operational condition are much larger than those under the parked condition.The model and methodology presented in this study demonstrate potential for examining complex dynamic behaviors of the monopile OWTs.To ensure accuracy and precision,it is imperative to construct a detailed model of the wind turbine system,while also taking into account simulation efficiency. 展开更多
关键词 offshore wind turbine(OWT) pile−soil interaction dynamic response parked condition operating condition
下载PDF
Response of single piles and pipelines in liquefaction-induced lateral spreads using controlled blasting 被引量:8
9
作者 Scott A.Ashford Teerawut Juirnarongrit 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2002年第2期181-193,共13页
Two full-scale experiments using controlled blasting were conducted in the Port of Tokachi on Hokkaido Island, Japan,to assess the behavior of piles and pipelines subjected to lateral spreading.Test specimens were ext... Two full-scale experiments using controlled blasting were conducted in the Port of Tokachi on Hokkaido Island, Japan,to assess the behavior of piles and pipelines subjected to lateral spreading.Test specimens were extensively instrumented with strain gauges to measure the distribution of moment during lateral spreading.This allowed us to compute the loading condition,as well as to conduct damage and performance assessments on the piles and pipelines.This paper presents the test results and discussions on the response of single piles and pipelines observed from the full-scale experiments.Based on the test results,it can be concluded that using controlled blasting successfully liquefied the soil,and subsequently induced lateral spreading.The movements of the single pile,as well as the transverse pipelines,were approximately the same as the free field soil movement.Observed moment distribution of the single pile indicated that global translation of the liquefied soil layer provided insignificant force to the pile.In addition,the degree of fixity at the pile tip significantly affected the moment along the pile as well as the pile head displacement.The pile with a higher degree of fixity at the pile tip had smaller pile head displacement but larger maximum moment. 展开更多
关键词 piles pipelines pile tests lateral spreading LIQUEFACTION soil-pile interaction
下载PDF
Investigation on the Effect of Geometrical and Geotechnical Parameters on Elongated Offshore Piles Using Fuzzy Inference Systems 被引量:1
10
作者 Ali AMINFAR Alireza MOJTAHEDI +1 位作者 Hamid AHMADI Mohammad Hossain AMINFAR 《China Ocean Engineering》 SCIE EI CSCD 2017年第3期378-388,共11页
Among numerous offshore structures used in oil extraction, jacket platforms are still the most favorable ones in shallow waters. In such structures, log piles are used to pin the substructure of the platform to the se... Among numerous offshore structures used in oil extraction, jacket platforms are still the most favorable ones in shallow waters. In such structures, log piles are used to pin the substructure of the platform to the seabed. The pile's geometrical and geotechnical properties are considered as the main parameters in designing these structures. In this study, ANSYS was used as the FE modeling software to study the geometrical and geotechnical properties of the offshore piles and their effects on supporting jacket platforms. For this purpose, the FE analysis has been done to provide the preliminary data for the fuzzy-logic post-process. The resulting data were implemented to create Fuzzy Inference System (FIS) classifications. The resultant data of the sensitivity analysis suggested that the orientation degree is the main factor in the pile's geometrical behavior because piles which had the optimal operational degree of about 5° arc more sustained. Finally, the results showed that the related fuzzified data supported the FE model and provided an insight for extended offshore pile designs. 展开更多
关键词 PILE soil FEM offshore jacket platform pile-soil interaction ^-logic FUZZIFICATION
下载PDF
Interaction Between Pile-Supported Pier and Bank Slope 被引量:1
11
作者 Wei Rulong , Wang Nianxiang Yang Shouhua Prof., Senior Engineer, Nanjing Hydraulic Research Institute, 210029 Nanjing Engineer, Nanjing Hydraulic Research Institute, 210029 Nanjing 《China Ocean Engineering》 SCIE EI 1992年第2期201-214,共14页
- Generally the toe of the bank slope in front of the pile- supported pier has to be dredged to meet the requirements of water depth for the berth of ships, while the top of the slope in rear of the pier must be backf... - Generally the toe of the bank slope in front of the pile- supported pier has to be dredged to meet the requirements of water depth for the berth of ships, while the top of the slope in rear of the pier must be backfilled and elevated to make connections with land transportation. Then the natural state of equilibrium of the slope is destroyed, and some deformation and displacement are unavoidably induced in the soil mass which will exert an undesirable influence on the pile foundation of the pier. This is a typical problem of the interaction between the so-called 'passive pile' and surrounding soil, and has been scarcely studied in the literature of geotechnical engineering. In this paper, field observation, model tests and numerical analysis conducted by the authors to study the interaction between pile-supported pier and bank slope are briefly described and some preliminary results are presented. 展开更多
关键词 interaction passive pile PIER slope
下载PDF
Shake table test of soil-pile groups-bridge structure interaction in liquefiable ground 被引量:16
12
作者 Tang Liang Ling Xianzhang +2 位作者 Xu Pengju Gao Xia Wang Dongsheng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第1期39-50,共12页
This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground. The soil profile, contained in a large-scale laminar shear box, consisted of a... This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground. The soil profile, contained in a large-scale laminar shear box, consisted of a horizontally saturated sand layer overlaid with a silty clay layer, with the simulated low-cap pile groups embedded. The container was excited in three E1 Centro earthquake events of different levels. Test results indicate that excessive pore pressure (EPP) during slight shaking only slightly accumulated, and the accumulation mainly occurred during strong shaking. The EPP was gradually enhanced as the amplitude and duration of the input acceleration increased. The acceleration response of the sand was remarkably influenced by soil liquefaction. As soil liquefaction occurred, the peak sand displacement gradually lagged behind the input acceleration; meanwhile, the sand displacement exhibited an increasing effect on the bending moment of the pile, and acceleration responses of the pile and the sand layer gradually changed from decreasing to increasing in the vertical direction from the bottom to the top. A jump variation of the bending moment on the pile was observed near the soil interface in all three input earthquake events. It is thought that the shake table tests could provide the groundwork for further seismic performance studies of low-cap pile groups used in bridges located on liquefiable groun. 展开更多
关键词 liquefiable ground seismic soil-pile-structure interaction pile groups of bridge shake table test
下载PDF
Study of vibrating foundations considering soil-pile-structure interaction for practical applications 被引量:5
13
作者 Han Yingcai 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2008年第3期321-327,共7页
An investigation of soil-pile-structure interaction is carried out, based on a large reciprocating compressor installed on an elevated concrete foundation (table top structure). A practical method is described for t... An investigation of soil-pile-structure interaction is carried out, based on a large reciprocating compressor installed on an elevated concrete foundation (table top structure). A practical method is described for the dynamic analysis, and compared with a 3D finite element (FE) model. Two commercial software packages are used for dynamic analysis considering the soilpile-structure interaction (SPSI). Stiffness and damping of the pile foundation are generated from a computer program, and then input into the FE model. To examine the SPSI thoroughly, three cases for the soil, piles and superstructure are considered and compared. In the first case, the interaction is fully taken into account, that is, both the superstructure and soil-pile system are flexible. In the second case, the superstructure is flexible but fixed to a rigid base, with no deformation in the base (no SSI). In the third case, the dynamic soil-pile interaction is taken into account, but the table top structure is assumed to be rigid. From the comparison beteen the results of these three cases some conclusions are made, which could be helpful for engineering practice. 展开更多
关键词 soil-pile-structure interaction soil dynamics structural dynamics vibrating foundation
下载PDF
Influence of dynamic soil-pile raft-structure interaction:an experimental approach 被引量:5
14
作者 Rajib Saha Sumanta Haldar Sekhar Chandra Dutta 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2015年第4期625-645,共21页
Traditionally seismic design of structures supported on piled raft foundation is performed by considering fixed base conditions, while the pile head is also considered to be fixed for the design of the pile foundation... Traditionally seismic design of structures supported on piled raft foundation is performed by considering fixed base conditions, while the pile head is also considered to be fixed for the design of the pile foundation. Major drawback of this assumption is that it cannot capture soil-foundation-structure interaction due to flexibility of soil or the inertial interaction involving heavy foundation masses. Previous studies on this subject addressed mainly the intricacy in modelling of dynamic soil structure interaction (DSSI) but not the implication of such interaction on the distribution of forces at various elements of the pile foundation and supported structure. A recent numerical study by the authors showed significant change in response at different elements of the piled raft supported structure when DSSI effects are considered. The present study is a limited attempt in this direction, and it examines such observations through shake table tests. The effect of DSSI is examined by comparing dynamic responses from fixed base scaled down model structures and the overall systems. This study indicates the possibility of significant underestimation in design forces for both the column and pile if designed under fixed base assumption. Such underestimation in the design forces may have serious implication in the design of a foundation or structural element. 展开更多
关键词 soil-foundation-structure interaction piled raft foundation base shear pile head shear model test
下载PDF
Seismic response of tall building considering soil-pile-structure interaction 被引量:6
15
作者 Han Yingcai Fluor Canada Ltd.,Calgary,AB,Canada Ph.D.,Principal Engineering Specialist 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2002年第1期57-64,共8页
The seismic behavior of tall buildings can he greatly affected by non-linear soil-pile interaction during strong earthquakes.In this study a 20-storey building is examined as a typical structure supported on a pile fo... The seismic behavior of tall buildings can he greatly affected by non-linear soil-pile interaction during strong earthquakes.In this study a 20-storey building is examined as a typical structure supported on a pile foundation for different conditions:(1) rigid base,i.e.no deformation in the foundation:(2) linear soil-pile system;and (3) nonlinear soil-pile system. The effects of pile foundation displacements on the behavior of tall building are investigated,and compared with the behavior of buildings supported on shallow foundation.With a model of non-reflective boundary between the near field and far field, Novak's method of soil-pile interaction is improved.The computation method for vibration of pile foundations and DYNAN computer program are introduced comprehensively.A series of dynamic experiments have been done on full-scale piles, including single pile and group,linear vibration and nonlinear vibration,to verify the validity of boundary zone model. 展开更多
关键词 dynamic soil-pile-structure interaction soil dynamics structural dynamics nonlinear vibration seismic response of tall building
下载PDF
Optimum Design of Jacket Platforms Considering Structure-Pile-Soil Interaction 被引量:1
16
作者 宋玉普 封盛 康海贵 《China Ocean Engineering》 SCIE EI 1999年第3期309-316,共8页
This paper proposes an optimum design model for the offshore jacket platform considering multidesign criteria, multi-design constraints and the structure-pile-soil interaction, and gives an optimum design procedure in... This paper proposes an optimum design model for the offshore jacket platform considering multidesign criteria, multi-design constraints and the structure-pile-soil interaction, and gives an optimum design procedure in which the proposed optimum design model is used together with structural analysis software SAP91 and optimum algorithm software OPB1. The Chengbei (#)11 offshore platform, which lies in the Shengli oilfield, is designed by use of the above optimum design model. The results show that the optimum design model is stable, and it depends on neither the optimization algorithm nor initial values of design variables. All values of the objective function converge to the same minimum value, and the speed of convergence is high, showing that the proposed optimum design model is reasonable. 展开更多
关键词 jacket platform optimum design structure-pile-soil interaction
下载PDF
A Simplified Method for Estimating the Initial Stiffness of Monopile-Soil Interaction Under Lateral Loads in Offshore Wind Turbine Systems
17
作者 LI Xiao-juan DAI Guo-liang +2 位作者 ZHU Ming-xing WANG Li-yan LIU Hong-yuan 《China Ocean Engineering》 SCIE EI CSCD 2023年第1期165-174,共10页
The interface mechanical behavior of a monopile is an important component of the overall offshore wind turbine structure design.Understanding the soil-structure interaction,particularly the initial soil-structure stif... The interface mechanical behavior of a monopile is an important component of the overall offshore wind turbine structure design.Understanding the soil-structure interaction,particularly the initial soil-structure stiffness,has a significant impact on the study of natural frequency and dynamic response of the monopile.In this paper,a simplified method for estimating the interface mechanical behavior of monopiles under initial lateral loads is proposed.Depending on the principle of minimum potential energy and virtual work theory,the functions of soil reaction components at the interface of monopiles are derived;MATLAB programming has been used to simplify the functions of the initial stiffness by fitting a large number of examples;then the functions are validated against the field test data and FDM results.This method can modify the modulus of the subgrade reaction in the p-y curve method for the monopile-supported offshore wind turbine system. 展开更多
关键词 theoretical analysis pile−soil interaction interface mechanical behavior offshore wind turbine systems
下载PDF
Vibration Analysis of Frame Structure with Soil-Structure Interaction
18
作者 Raft Mohammed Qasim 《Journal of Environmental Science and Engineering(B)》 2015年第5期262-281,共20页
A common design practice for dynamic loading assumes the frame fixed at their bases. In reality, the supporting soil medium allows movement to some extent due to its property to deform. This may decrease the overall s... A common design practice for dynamic loading assumes the frame fixed at their bases. In reality, the supporting soil medium allows movement to some extent due to its property to deform. This may decrease the overall stiffness of the structural system and may increase the natural period of the system. The effect of soil flexibility is suggested to be accounted through consideration of springs which have specified stiffness and soil half space. Results show that the dynamic response of frame structure to vibrations is due to applied dynamic load and is highly dependent on the soil type and the method of modeling soil structure interaction. The response of frame structure under dynamic load is higher in case of linear discrete independent spring as comparing with perfect bond cases. Except the response of frame in case of piles embedded in soft clay, half space are higher than frame with piles and linear elastic spring due to the interaction between the frequencies of applied load and frequencies of frame structure. Also, result showed that it is important to include the soil-structure interaction in the analysis of the system in order to correctly simulate the dynamic problem for controlling on the resonance phenomena. 展开更多
关键词 soil structure interaction FLEXIBILITY PILE
下载PDF
Numerical Study of Piles Group under Seismic Loading in Frictinal Soil—Inclination Effect
19
作者 Fadi Hage Chehade Marwan Sadek Douaa Bachir 《Open Journal of Earthquake Research》 2014年第1期15-21,共7页
Recent devastating earthquakes in some countries, such as Pakistan, Turkey, Algeria and China, call to the mind the high risk exposure of Lebanon which is located over an active seismic zone. Many experts shared the v... Recent devastating earthquakes in some countries, such as Pakistan, Turkey, Algeria and China, call to the mind the high risk exposure of Lebanon which is located over an active seismic zone. Many experts shared the view that major seismic event may occur in Lebanon in the future. Moreover, many earthquakes, of low magnitudes between three and four, have been registered in Lebanon during 2008. These events have increased the anxiety of Lebanese people because of the poor quality of the constructions and their behavior under moderate or severe earthquake events. The efficient way to minimize seismic effects, material and human losses, is the prevention. The system piles-foundation is an appropriate way and widely used to ensure the stability of constructions when subjected to seismic excitation. It seems necessary to study the interaction of pile-foundation-pile-cap-structure in the case of non linear soil behavior and the interface pile-soil. The study will be also conducted by using measures recorded during real earthquakes for example in Turkey (Kocaeli, 1999). In this paper, we present a numerical modeling of the interaction of using FLAC3D software. According to soil behavior and pile inclination, parametric studies are also performed. The analysis of the results could give the better piles group configuration in order to minimize the seismic effect on the structures. 展开更多
关键词 Frictional soil INCLINATION interaction Non Linear NUMERICAL Modeling piles GROUP
下载PDF
Longitudinal dynamic response of pile in layered soil based on virtual soil pile model 被引量:9
20
作者 吴文兵 王奎华 +1 位作者 马少俊 CHIN Jian Leo 《Journal of Central South University》 SCIE EI CAS 2012年第7期1999-2007,共9页
Taking the effect of finite soil layers below pile end into account,the longitudinal dynamic response of pile undergoing dynamic loading in layered soil was theoretically investigated.Firstly,finite soil layers below ... Taking the effect of finite soil layers below pile end into account,the longitudinal dynamic response of pile undergoing dynamic loading in layered soil was theoretically investigated.Firstly,finite soil layers below pile end are modeled as virtual soil pile whose cross-section area is the same as that of the pile and the soil layers surrounding the pile are described by the plane strain model.Then,by virtue of Laplace transform and impedance function transfer method,the analytical solution of longitudinal dynamic response at the pile head in frequency domain is yielded.Also,the semi-analytical solution in time domain undergoing half-cycle sine pulse at the pile head is obtained by means of inverse Laplace transform.Based on these solutions,a parametric study is conducted to analyze emphatically the effects of parameters of soil below pile end on velocity admittance and reflected wave signals at the pile head.Additionally,a comparison with other models with different supporting conditions from soil below pile end is performed to verify the model presented. 展开更多
关键词 soil-pile dynamic interaction virtual soil pile layered soil longitudinal vibration velocity admittance reflected wavesignal
下载PDF
上一页 1 2 85 下一页 到第
使用帮助 返回顶部