The orderly organelle interaction network is prerequisite for normal life activity of cell, ensuring a balance between communication and uniqueness of organelles. Disorder organelle interaction is implicated in the oc...The orderly organelle interaction network is prerequisite for normal life activity of cell, ensuring a balance between communication and uniqueness of organelles. Disorder organelle interaction is implicated in the occurrence and development of many diseases. An in-depth understanding of mechanisms of orderly organelle interaction helps to reveal the pathogenesis of related diseases. Chemical and genetic tools have identified the roles of specific proteins in orderly organelle interaction;however, little is known about the modes, functions and mechanisms of orderly interaction between organelles. With rapid development of imaging tools, deep-going insights into the structure feature of cell membranes have substantially improved our understanding of the mechanisms of ordered organelle interactions. This review summarizes the conventional molecular mechanism of orderly organelle interactions, and highlights the new progress regarding membrane structure and the novel structural mechanism of orderly organelle transport.展开更多
The correspondence analysis will describe elemental association accompanying an indicator samples.This analysis indicates strong mineralization of Ag,As,Pb,Te,Mo,Au,Zn and to a lesser extent S,W,Cu at Glojeh polymetal...The correspondence analysis will describe elemental association accompanying an indicator samples.This analysis indicates strong mineralization of Ag,As,Pb,Te,Mo,Au,Zn and to a lesser extent S,W,Cu at Glojeh polymetallic mineralization,NW Iran.This work proposes a backward elimination approach(BEA)that quantitatively predicts the Au concentration from main effects(X),quadratic terms(X2)and the first order interaction(Xi×Xj)of Ag,Cu,Pb,and Zn by initialization,order reduction and validation of model.BEA is done based on the quadratic model(QM),and it was eliminated to reduced quadratic model(RQM)by removing insignificant predictors.During the QM optimization process,overall convergence trend of R2,R2(adj)and R2(pred)is obvious,corresponding to increase in the R2(pred)and decrease of R2.The RQM consisted of(threshold value,Cu,Ag×Cu,Pb×Zn,and Ag2-Pb2)and(Pb,Ag×Cu,Ag×Pb,Cu×Zn,Pb×Zn,and Ag2)as main predictors of optimized model according to288and679litho-samples in trenches and boreholes,respectively.Due to the strong genetic effects with Au mineralization,Pb,Ag2,and Ag×Pb are important predictors in boreholes RQM,while the threshold value is known as an important predictor in the trenches model.The RQMs R2(pred)equal74.90%and60.62%which are verified by R2equal to73.9%and60.9%in the trenches and boreholes validation group,respectively.展开更多
基金This work was supported by the National Key R&D Program of China(No.2017YFA0505300)the National Natural Science Foundation of China(Nos.21727816,21721003)the Program of Laboratory for Marine Biology and Biotechnology,Pilot National Laboratory for Marine Science and Technology(Qingdao),China(No.MS2018NO08).
文摘The orderly organelle interaction network is prerequisite for normal life activity of cell, ensuring a balance between communication and uniqueness of organelles. Disorder organelle interaction is implicated in the occurrence and development of many diseases. An in-depth understanding of mechanisms of orderly organelle interaction helps to reveal the pathogenesis of related diseases. Chemical and genetic tools have identified the roles of specific proteins in orderly organelle interaction;however, little is known about the modes, functions and mechanisms of orderly interaction between organelles. With rapid development of imaging tools, deep-going insights into the structure feature of cell membranes have substantially improved our understanding of the mechanisms of ordered organelle interactions. This review summarizes the conventional molecular mechanism of orderly organelle interactions, and highlights the new progress regarding membrane structure and the novel structural mechanism of orderly organelle transport.
基金support of the IMIDRO(Iranian Mines and Mining Industries Development & Renovation Organization) for our research
文摘The correspondence analysis will describe elemental association accompanying an indicator samples.This analysis indicates strong mineralization of Ag,As,Pb,Te,Mo,Au,Zn and to a lesser extent S,W,Cu at Glojeh polymetallic mineralization,NW Iran.This work proposes a backward elimination approach(BEA)that quantitatively predicts the Au concentration from main effects(X),quadratic terms(X2)and the first order interaction(Xi×Xj)of Ag,Cu,Pb,and Zn by initialization,order reduction and validation of model.BEA is done based on the quadratic model(QM),and it was eliminated to reduced quadratic model(RQM)by removing insignificant predictors.During the QM optimization process,overall convergence trend of R2,R2(adj)and R2(pred)is obvious,corresponding to increase in the R2(pred)and decrease of R2.The RQM consisted of(threshold value,Cu,Ag×Cu,Pb×Zn,and Ag2-Pb2)and(Pb,Ag×Cu,Ag×Pb,Cu×Zn,Pb×Zn,and Ag2)as main predictors of optimized model according to288and679litho-samples in trenches and boreholes,respectively.Due to the strong genetic effects with Au mineralization,Pb,Ag2,and Ag×Pb are important predictors in boreholes RQM,while the threshold value is known as an important predictor in the trenches model.The RQMs R2(pred)equal74.90%and60.62%which are verified by R2equal to73.9%and60.9%in the trenches and boreholes validation group,respectively.