By employing the complexification method and velocity resonant principle to N-solitons of the(2+1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt(KDKK)equation,we obtain the soliton molecules,T-br...By employing the complexification method and velocity resonant principle to N-solitons of the(2+1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt(KDKK)equation,we obtain the soliton molecules,T-breather molecules,T-breather–L-soliton molecules and some interaction solutions when N≤6.Dynamical behaviors of these solutions are discussed analytically and graphically.The method adopted can be effectively used to construct soliton molecules and T-breather molecules of other nonlinear evolution equations.The results obtained may be helpful for experts to study the related phenomenon in oceanography and atmospheric science.展开更多
Based on the Hirota bilinear method,the second extended(3+1)-dimensional Jimbo–Miwa equation is established.By Maple symbolic calculation,lump and lump-kink soliton solutions are obtained.The interaction solutions be...Based on the Hirota bilinear method,the second extended(3+1)-dimensional Jimbo–Miwa equation is established.By Maple symbolic calculation,lump and lump-kink soliton solutions are obtained.The interaction solutions between the lump and multi-kink soliton,and the interaction between the lump and triangular periodic soliton are derived by combining a multi-exponential function or trigonometric sine and cosine functions with quadratic functions.Furthermore,periodiclump wave solution is derived via the ansatz including hyperbolic and trigonometric functions.Finally,3D plots,2D curves,density plots,and contour plots with particular choices of the suitable parameters are depicted to illustrate the dynamical features of these solutions.展开更多
We explore the (2+l)-dimensional dispersive long-wave (DLW) system. From the standard truncated Painleve expansion, the Baicklund transformation (BT) and residual symmetries of this system are derived. The intr...We explore the (2+l)-dimensional dispersive long-wave (DLW) system. From the standard truncated Painleve expansion, the Baicklund transformation (BT) and residual symmetries of this system are derived. The introduction to an appropriate auxiliary dependent variable successfully localizes the residual symmetries to Lie point symmetries. In particular, it is verified that the (2+l)-dimensional DLW system is consistent Riccati expansion (CRE) solvable. If the special form of (CRE)-consistent tanh-function expansion (CTE) is taken, the soliton-cnoidal wave solutions and corresponding images can be explicitly given. Furthermore, the conservation laws of the DLW system are investigated with symmetries and Ibragimov theorem.展开更多
We focus on the localized characteristics of lump and interaction solutions to two extended Jimbo–Miwa equations.Based on the Hirota bilinear method and the test function method,we construct the exact solutions to th...We focus on the localized characteristics of lump and interaction solutions to two extended Jimbo–Miwa equations.Based on the Hirota bilinear method and the test function method,we construct the exact solutions to the extended equations including lump solutions,lump–kink solutions,and two other types of interaction solutions,by solving the underdetermined nonlinear system of algebraic equations for associated parameters.Finally,analysis and graphical simulation are presented to show the dynamical characteristics of our solutions and the interaction behaviors are revealed.展开更多
A chain of novel higher order rational solutions with some parameters and interaction solutions of a(2+1)-dimensional reverse space–time nonlocal Schrodinger(NLS)equation was derived by a generalized Darboux transfor...A chain of novel higher order rational solutions with some parameters and interaction solutions of a(2+1)-dimensional reverse space–time nonlocal Schrodinger(NLS)equation was derived by a generalized Darboux transformation(DT)which is derived by Taylor expansion and determinants.We obtained a series of higher-order rational solutions by one spectral parameter and we could get the periodic wave solution and three kinds of interaction solutions,singular breather and periodic wave interaction solution,singular breather and traveling wave interaction solution,bimodal breather and periodic wave interaction solution by two spectral parameters.We found a general formula for these solutions in the form of determinants.We also analyzed the complex wave structures of the dynamic behaviors and the effects of special parameters and presented exact solutions for the(2+1)-dimensional reverse space–time nonlocal NLS equation.展开更多
In this paper,based on the forms and structures of Wronskian solutions to soliton equations,a Wronskianform expansion method is presented to find a new class of interaction solutions to the Kadomtsev-Petviashvili equa...In this paper,based on the forms and structures of Wronskian solutions to soliton equations,a Wronskianform expansion method is presented to find a new class of interaction solutions to the Kadomtsev-Petviashvili equation.One characteristic of the method is that Wronskian entries do not satisfy linear partial differential equation.展开更多
The integrability of the coupled, modified KdV equation and the potential Boiti-Leon-Manna-Pempinelli (mKdV-BLMP) system is investigated using the Painlevé analysis approach. It is shown that this coupled system ...The integrability of the coupled, modified KdV equation and the potential Boiti-Leon-Manna-Pempinelli (mKdV-BLMP) system is investigated using the Painlevé analysis approach. It is shown that this coupled system possesses the Painlevé property in both the principal and secondary branches. Then, the consistent Riccati expansion (CRE) method is applied to the coupled mKdV-BLMP system. As a result, it is CRE solvable for the principal branch while non-CRE solvable for the secondary branch. Finally, starting from the last consistent differential equation in the CRE solvable case, soliton, multiple resonant soliton solutions and soliton-cnoidal wave interaction solutions are constructed explicitly.展开更多
With the aid of the Painlevé analysis, we obtain residual symmetries for a new(3+1)-dimensional generalized Kadomtsev–Petviashvili(gKP) equation. The residual symmetry is localized and the finite transformation ...With the aid of the Painlevé analysis, we obtain residual symmetries for a new(3+1)-dimensional generalized Kadomtsev–Petviashvili(gKP) equation. The residual symmetry is localized and the finite transformation is proposed by introducing suitable auxiliary variables. In addition, the interaction solutions of the(3+1)-dimensional gKP equation are constructed via the consistent Riccati expansion method. Particularly, some analytical soliton-cnoidal interaction solutions are discussed in graphical way.展开更多
In this paper,we mainly focus on proving the existence of lump solutions to a generalized(3+1)-dimensional nonlinear differential equation.Hirota’s bilinear method and a quadratic function method are employed to deri...In this paper,we mainly focus on proving the existence of lump solutions to a generalized(3+1)-dimensional nonlinear differential equation.Hirota’s bilinear method and a quadratic function method are employed to derive the lump solutions localized in the whole plane for a(3+1)-dimensional nonlinear differential equation.Three examples of such a nonlinear equation are presented to investigate the exact expressions of the lump solutions.Moreover,the 3d plots and corresponding density plots of the solutions are given to show the space structures of the lump waves.In addition,the breath-wave solutions and several interaction solutions of the(3+1)-dimensional nonlinear differential equation are obtained and their dynamics are analyzed.展开更多
By employing the Hirota’s bilinear method and different test functions, the breather solutions of HSI equation with different structures are obtained based on symbolic calculation with perturbation parameters. Some n...By employing the Hirota’s bilinear method and different test functions, the breather solutions of HSI equation with different structures are obtained based on symbolic calculation with perturbation parameters. Some new lump solitons are found in the process of studying the degradation behavior of breather solutions. The interaction between lump solution and soliton solution is constructed in the form of lump solution, and the motion trajectory of lump is obtained. In addition, the theorem of lump solitons and N-solitons superposition is given and proved. The superposition formula of lump is derived from the theorem, and its spatial evolution behavior is given.展开更多
This paper aims to search for the solutions of the(2+1)-dimensional extended Boiti–Leon–Manna–Pempinelli equation.Lump solutions,breather solutions,mixed solutions with solitons,and lump-breather solutions can be o...This paper aims to search for the solutions of the(2+1)-dimensional extended Boiti–Leon–Manna–Pempinelli equation.Lump solutions,breather solutions,mixed solutions with solitons,and lump-breather solutions can be obtained from the N-soliton solution formula by using the long-wave limit approach and the conjugate complex method.We use both specific circumstances and general higher-order forms of the hybrid solutions as examples.With the help of maple software,we create density and 3D graphs to summarize the dynamic properties of these solutions.Additionally,it is possible to observe how the solutions'trajectory,velocity,and shape vary over time.展开更多
A new high-dimensional two-place Alice–Bob-Kadomtsev–Petviashvili(AB-KP)equation is proposed by applying the Alice–Bob-Bob–Alice principle and shifted-parity,delayed time reversal,charge conjugation(■)principle t...A new high-dimensional two-place Alice–Bob-Kadomtsev–Petviashvili(AB-KP)equation is proposed by applying the Alice–Bob-Bob–Alice principle and shifted-parity,delayed time reversal,charge conjugation(■)principle to the usual KP equation.Based on the dependent variable transformation,the bilinear form of the AB-KP system is constructed.Explicit trigonometric-hyperbolic,rational and rational-hyperbolic solutions are presented by taking advantage of the Hirota bilinear method.The obtained breather,lump,and interaction solutions enrich the solution structure of nonlocal nonlinear systems.The three-dimensional graphs of these nonlinear wave solutions are demonstrated by choosing the specific parameters.展开更多
This paper mainly discusses the(2+1)-dimensional modified dispersive water-wave(MDWW) system which will be proved nonlinear self-adjointness. This property is applied to construct conservation laws corresponding to th...This paper mainly discusses the(2+1)-dimensional modified dispersive water-wave(MDWW) system which will be proved nonlinear self-adjointness. This property is applied to construct conservation laws corresponding to the symmetries of the system. Moreover, via the truncated Painlev′e analysis and consistent tanh-function expansion(CTE)method, the soliton-cnoidal periodic wave interaction solutions and corresponding images will be eventually achieved.展开更多
In this paper, the truncated Painleve analysis and the consistent tanh expansion (CTE) method are developed for the (2+1)-dimensional breaking soliton equation. As a result, the soliton-cnoidal wave interaction s...In this paper, the truncated Painleve analysis and the consistent tanh expansion (CTE) method are developed for the (2+1)-dimensional breaking soliton equation. As a result, the soliton-cnoidal wave interaction solution of the equation is explicitly given, which is dimcult to be found by other traditional methods. When the value of the Jacobi elliptic function modulus rn = 1, the soliton-cnoidal wave interaction solution reduces back to the two-soliton solution. The method can also be extended to other types of nonlinear evolution equations in mathematical physics.展开更多
This paper is concerned with the fifth-order modified Korteweg-de Vries(fmKdV) equation. It is proved that the fmKdV equation is consistent Riccati expansion(CRE) solvable. Three special form of soliton-cnoidal wave i...This paper is concerned with the fifth-order modified Korteweg-de Vries(fmKdV) equation. It is proved that the fmKdV equation is consistent Riccati expansion(CRE) solvable. Three special form of soliton-cnoidal wave interaction solutions are discussed analytically and shown graphically. Furthermore, based on the consistent tanh expansion(CTE) method, the nonlocal symmetry related to the consistent tanh expansion(CTE) is investigated, we also give the relationship between this kind of nonlocal symmetry and the residual symmetry which can be obtained with the truncated Painlev′e method. We further study the spectral function symmetry and derive the Lax pair of the fmKdV equation. The residual symmetry can be localized to the Lie point symmetry of an enlarged system and the corresponding finite transformation group is computed.展开更多
In this paper,a modified version of the solution in form of a Gramian formula is employed to investigate a new type of multiple lump molecule solution of the Kadomtsev–Petviashvili I equation.The high-order multiple ...In this paper,a modified version of the solution in form of a Gramian formula is employed to investigate a new type of multiple lump molecule solution of the Kadomtsev–Petviashvili I equation.The high-order multiple lump molecules consisting of M N-lump molecules are constructed by means of the Mth-order determinant and the non-homogeneous polynomial in the degree of 2N.The interaction solutions describing P line solitons radiating P of the M N-lump molecules are constructed.The dynamic behaviors of some specific solutions are analyzed through numerical simulation.All the results will enrich our understanding of the multiple lump waves of the Kadomtsev–Petviashvili I equation.展开更多
The nonlocal symmetry of the Sawada–Kotera(SK)equation is constructed with the known Lax pair.By introducing suitable and simple auxiliary variables,the nonlocal symmetry is localized and the finite transformation an...The nonlocal symmetry of the Sawada–Kotera(SK)equation is constructed with the known Lax pair.By introducing suitable and simple auxiliary variables,the nonlocal symmetry is localized and the finite transformation and some new solutions are obtained further.On the other hand,the group invariant solutions of the SK equation are constructed with the classic Lie group method.In particular,by a Galileo transformation some analytical soliton-cnoidal interaction solutions of a asymptotically integrable equation are discussed in graphical ways.展开更多
The(1+1)-dimensional higher-order Broer–Kaup(HBK) system is studied by consistent tanh expansion(CTE) method in this paper. It is proved that the HBK system is CTE solvable, and some exact interaction solutions among...The(1+1)-dimensional higher-order Broer–Kaup(HBK) system is studied by consistent tanh expansion(CTE) method in this paper. It is proved that the HBK system is CTE solvable, and some exact interaction solutions among different nonlinear excitations such as solitons, rational waves, periodic waves, corresponding images are explicitly given.展开更多
The(2+1)-dimensional Boiti-Leon-Manna-Pempinelli(BLMP)equation is an important integrable model.In this paper,we obtain the breather molecule,the breather-soliton molecule and some localized interaction solutions to t...The(2+1)-dimensional Boiti-Leon-Manna-Pempinelli(BLMP)equation is an important integrable model.In this paper,we obtain the breather molecule,the breather-soliton molecule and some localized interaction solutions to the BLMP equation.In particular,by employing a compound method consisting of the velocity resonance,partial module resonance and degeneration of the breather techniques,we derive some interesting hybrid solutions mixed by a breather-soliton molecule/breather molecule and a lump,as well as a bell-shaped soliton and lump.Due to the lack of the long wave limit,it is the first time using the compound degeneration method to construct the hybrid solutions involving a lump.The dynamical behaviors and mathematical features of the solutions are analyzed theoretically and graphically.The method introduced can be effectively used to study the wave solutions of other nonlinear partial differential equations.展开更多
The famous Kadomtsev-Petviashvili(KP)equation 1 s a classical equation In soliton tneory.A Backlund transformation between the KP equation and the Schwarzian KP equation is demonstrated by means of the truncated Painl...The famous Kadomtsev-Petviashvili(KP)equation 1 s a classical equation In soliton tneory.A Backlund transformation between the KP equation and the Schwarzian KP equation is demonstrated by means of the truncated Painlev6 expansion in this paper.One-parameter group transformations and one-parameter subgroup-invariant solutions for the extended KP equation are obtained.The consistent Riccati expansion(CRE) solvability of the KP equation is proved.Some interaction structures between soliton-cnoidal waves are obtained by CRE and several evolution graphs and density graphs are plotted.展开更多
基金Jiangsu Provincial Natural Science Foundation of China(Grant Nos.BK20221508,11775116,BK20210380,and JSSCBS20210277)SRT(Grant No.202210307165Y)Jiangsu Qinglan High-level Talent Project.
文摘By employing the complexification method and velocity resonant principle to N-solitons of the(2+1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt(KDKK)equation,we obtain the soliton molecules,T-breather molecules,T-breather–L-soliton molecules and some interaction solutions when N≤6.Dynamical behaviors of these solutions are discussed analytically and graphically.The method adopted can be effectively used to construct soliton molecules and T-breather molecules of other nonlinear evolution equations.The results obtained may be helpful for experts to study the related phenomenon in oceanography and atmospheric science.
文摘Based on the Hirota bilinear method,the second extended(3+1)-dimensional Jimbo–Miwa equation is established.By Maple symbolic calculation,lump and lump-kink soliton solutions are obtained.The interaction solutions between the lump and multi-kink soliton,and the interaction between the lump and triangular periodic soliton are derived by combining a multi-exponential function or trigonometric sine and cosine functions with quadratic functions.Furthermore,periodiclump wave solution is derived via the ansatz including hyperbolic and trigonometric functions.Finally,3D plots,2D curves,density plots,and contour plots with particular choices of the suitable parameters are depicted to illustrate the dynamical features of these solutions.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11371293 and 11505090)the Natural Science Foundation of Shaanxi Province,China(Grant No.2014JM2-1009)+1 种基金the Research Award Foundation for Outstanding Young Scientists of Shandong Province,China(Grant No.BS2015SF009)the Science and Technology Innovation Foundation of Xi’an,China(Grant No.CYX1531WL41)
文摘We explore the (2+l)-dimensional dispersive long-wave (DLW) system. From the standard truncated Painleve expansion, the Baicklund transformation (BT) and residual symmetries of this system are derived. The introduction to an appropriate auxiliary dependent variable successfully localizes the residual symmetries to Lie point symmetries. In particular, it is verified that the (2+l)-dimensional DLW system is consistent Riccati expansion (CRE) solvable. If the special form of (CRE)-consistent tanh-function expansion (CTE) is taken, the soliton-cnoidal wave solutions and corresponding images can be explicitly given. Furthermore, the conservation laws of the DLW system are investigated with symmetries and Ibragimov theorem.
基金Project supported by the Fundamental Research Funds for the Central Universities of China(Grant No.2018RC031)the National Natural Science Foundation of China(Grant No.71971015)+1 种基金the Program of the Co-Construction with Beijing Municipal Commission of Education of China(Grant Nos.B19H100010and B18H100040)the Open Fund of IPOC(BUPT)。
文摘We focus on the localized characteristics of lump and interaction solutions to two extended Jimbo–Miwa equations.Based on the Hirota bilinear method and the test function method,we construct the exact solutions to the extended equations including lump solutions,lump–kink solutions,and two other types of interaction solutions,by solving the underdetermined nonlinear system of algebraic equations for associated parameters.Finally,analysis and graphical simulation are presented to show the dynamical characteristics of our solutions and the interaction behaviors are revealed.
文摘A chain of novel higher order rational solutions with some parameters and interaction solutions of a(2+1)-dimensional reverse space–time nonlocal Schrodinger(NLS)equation was derived by a generalized Darboux transformation(DT)which is derived by Taylor expansion and determinants.We obtained a series of higher-order rational solutions by one spectral parameter and we could get the periodic wave solution and three kinds of interaction solutions,singular breather and periodic wave interaction solution,singular breather and traveling wave interaction solution,bimodal breather and periodic wave interaction solution by two spectral parameters.We found a general formula for these solutions in the form of determinants.We also analyzed the complex wave structures of the dynamic behaviors and the effects of special parameters and presented exact solutions for the(2+1)-dimensional reverse space–time nonlocal NLS equation.
基金Supported by the Young Teachers Science Foundation of Beijing University of Civil Engineering and Architecture under Grant No.100602707
文摘In this paper,based on the forms and structures of Wronskian solutions to soliton equations,a Wronskianform expansion method is presented to find a new class of interaction solutions to the Kadomtsev-Petviashvili equation.One characteristic of the method is that Wronskian entries do not satisfy linear partial differential equation.
基金Supported by the Natural Science Foundation of Zhejiang Province of China under Grant No LY14A010005
文摘The integrability of the coupled, modified KdV equation and the potential Boiti-Leon-Manna-Pempinelli (mKdV-BLMP) system is investigated using the Painlevé analysis approach. It is shown that this coupled system possesses the Painlevé property in both the principal and secondary branches. Then, the consistent Riccati expansion (CRE) method is applied to the coupled mKdV-BLMP system. As a result, it is CRE solvable for the principal branch while non-CRE solvable for the secondary branch. Finally, starting from the last consistent differential equation in the CRE solvable case, soliton, multiple resonant soliton solutions and soliton-cnoidal wave interaction solutions are constructed explicitly.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11835011 and 12074343)。
文摘With the aid of the Painlevé analysis, we obtain residual symmetries for a new(3+1)-dimensional generalized Kadomtsev–Petviashvili(gKP) equation. The residual symmetry is localized and the finite transformation is proposed by introducing suitable auxiliary variables. In addition, the interaction solutions of the(3+1)-dimensional gKP equation are constructed via the consistent Riccati expansion method. Particularly, some analytical soliton-cnoidal interaction solutions are discussed in graphical way.
基金supported by the National Natural Science Foundation of China(Nos.12101572,12371256)2023 Shanxi Province Graduate Innovation Project(No.2023KY614)the 19th Graduate Science and Technology Project of North University of China(No.20231943)。
文摘In this paper,we mainly focus on proving the existence of lump solutions to a generalized(3+1)-dimensional nonlinear differential equation.Hirota’s bilinear method and a quadratic function method are employed to derive the lump solutions localized in the whole plane for a(3+1)-dimensional nonlinear differential equation.Three examples of such a nonlinear equation are presented to investigate the exact expressions of the lump solutions.Moreover,the 3d plots and corresponding density plots of the solutions are given to show the space structures of the lump waves.In addition,the breath-wave solutions and several interaction solutions of the(3+1)-dimensional nonlinear differential equation are obtained and their dynamics are analyzed.
文摘By employing the Hirota’s bilinear method and different test functions, the breather solutions of HSI equation with different structures are obtained based on symbolic calculation with perturbation parameters. Some new lump solitons are found in the process of studying the degradation behavior of breather solutions. The interaction between lump solution and soliton solution is constructed in the form of lump solution, and the motion trajectory of lump is obtained. In addition, the theorem of lump solitons and N-solitons superposition is given and proved. The superposition formula of lump is derived from the theorem, and its spatial evolution behavior is given.
文摘This paper aims to search for the solutions of the(2+1)-dimensional extended Boiti–Leon–Manna–Pempinelli equation.Lump solutions,breather solutions,mixed solutions with solitons,and lump-breather solutions can be obtained from the N-soliton solution formula by using the long-wave limit approach and the conjugate complex method.We use both specific circumstances and general higher-order forms of the hybrid solutions as examples.With the help of maple software,we create density and 3D graphs to summarize the dynamic properties of these solutions.Additionally,it is possible to observe how the solutions'trajectory,velocity,and shape vary over time.
基金supported by the National Natural Science Foundation of China under grant number 11447017。
文摘A new high-dimensional two-place Alice–Bob-Kadomtsev–Petviashvili(AB-KP)equation is proposed by applying the Alice–Bob-Bob–Alice principle and shifted-parity,delayed time reversal,charge conjugation(■)principle to the usual KP equation.Based on the dependent variable transformation,the bilinear form of the AB-KP system is constructed.Explicit trigonometric-hyperbolic,rational and rational-hyperbolic solutions are presented by taking advantage of the Hirota bilinear method.The obtained breather,lump,and interaction solutions enrich the solution structure of nonlocal nonlinear systems.The three-dimensional graphs of these nonlinear wave solutions are demonstrated by choosing the specific parameters.
基金Supported by National Natural Science Foundation of China under Grant Nos.11371293,11505090the Natural Science Foundation of Shaanxi Province under Grant No.2014JM2-1009+1 种基金Research Award Foundation for Outstanding Young Scientists of Shandong Province under Grant No.BS2015SF009the Science and Technology Innovation Foundation of Xi’an under Grant No.CYX1531WL41
文摘This paper mainly discusses the(2+1)-dimensional modified dispersive water-wave(MDWW) system which will be proved nonlinear self-adjointness. This property is applied to construct conservation laws corresponding to the symmetries of the system. Moreover, via the truncated Painlev′e analysis and consistent tanh-function expansion(CTE)method, the soliton-cnoidal periodic wave interaction solutions and corresponding images will be eventually achieved.
基金Supported by National Natural Science Foundation of China under Grant Nos.11271211,11275072,11435005K.C.Wong Magna Fund in Ningbo University
文摘In this paper, the truncated Painleve analysis and the consistent tanh expansion (CTE) method are developed for the (2+1)-dimensional breaking soliton equation. As a result, the soliton-cnoidal wave interaction solution of the equation is explicitly given, which is dimcult to be found by other traditional methods. When the value of the Jacobi elliptic function modulus rn = 1, the soliton-cnoidal wave interaction solution reduces back to the two-soliton solution. The method can also be extended to other types of nonlinear evolution equations in mathematical physics.
基金Supported by National Natural Science Foundation of China under Grant No.11505090Research Award Foundation for Outstanding Young Scientists of Shandong Province under Grant No.BS2015SF009
文摘This paper is concerned with the fifth-order modified Korteweg-de Vries(fmKdV) equation. It is proved that the fmKdV equation is consistent Riccati expansion(CRE) solvable. Three special form of soliton-cnoidal wave interaction solutions are discussed analytically and shown graphically. Furthermore, based on the consistent tanh expansion(CTE) method, the nonlocal symmetry related to the consistent tanh expansion(CTE) is investigated, we also give the relationship between this kind of nonlocal symmetry and the residual symmetry which can be obtained with the truncated Painlev′e method. We further study the spectral function symmetry and derive the Lax pair of the fmKdV equation. The residual symmetry can be localized to the Lie point symmetry of an enlarged system and the corresponding finite transformation group is computed.
基金This work is supported by the National Natural Science Foundation of China(No.12 101 572)the Research Project Supported by the Shanxi Scholarship Council of China(No.2020-105).
文摘In this paper,a modified version of the solution in form of a Gramian formula is employed to investigate a new type of multiple lump molecule solution of the Kadomtsev–Petviashvili I equation.The high-order multiple lump molecules consisting of M N-lump molecules are constructed by means of the Mth-order determinant and the non-homogeneous polynomial in the degree of 2N.The interaction solutions describing P line solitons radiating P of the M N-lump molecules are constructed.The dynamic behaviors of some specific solutions are analyzed through numerical simulation.All the results will enrich our understanding of the multiple lump waves of the Kadomtsev–Petviashvili I equation.
基金supported by the National Natural Science Foundation of China,Grant No.11835011 and Grant No.11675146。
文摘The nonlocal symmetry of the Sawada–Kotera(SK)equation is constructed with the known Lax pair.By introducing suitable and simple auxiliary variables,the nonlocal symmetry is localized and the finite transformation and some new solutions are obtained further.On the other hand,the group invariant solutions of the SK equation are constructed with the classic Lie group method.In particular,by a Galileo transformation some analytical soliton-cnoidal interaction solutions of a asymptotically integrable equation are discussed in graphical ways.
基金Supported by National Natural Science Foundation of China under Grant Nos.11505090,11171041,11405103,11447220Research Award Foundation for Outstanding Young Scientists of Shandong Province under Grant No.BS2015SF009
文摘The(1+1)-dimensional higher-order Broer–Kaup(HBK) system is studied by consistent tanh expansion(CTE) method in this paper. It is proved that the HBK system is CTE solvable, and some exact interaction solutions among different nonlinear excitations such as solitons, rational waves, periodic waves, corresponding images are explicitly given.
基金supported by the National Natural Science Foundation of China under Grant No.11775116Jiangsu Qinglan high-level talent Project。
文摘The(2+1)-dimensional Boiti-Leon-Manna-Pempinelli(BLMP)equation is an important integrable model.In this paper,we obtain the breather molecule,the breather-soliton molecule and some localized interaction solutions to the BLMP equation.In particular,by employing a compound method consisting of the velocity resonance,partial module resonance and degeneration of the breather techniques,we derive some interesting hybrid solutions mixed by a breather-soliton molecule/breather molecule and a lump,as well as a bell-shaped soliton and lump.Due to the lack of the long wave limit,it is the first time using the compound degeneration method to construct the hybrid solutions involving a lump.The dynamical behaviors and mathematical features of the solutions are analyzed theoretically and graphically.The method introduced can be effectively used to study the wave solutions of other nonlinear partial differential equations.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11775047,11775146,and 11865013)the Science and Technology Project Foundation of Zhongshan City,China(Grant No.2017B1016).
文摘The famous Kadomtsev-Petviashvili(KP)equation 1 s a classical equation In soliton tneory.A Backlund transformation between the KP equation and the Schwarzian KP equation is demonstrated by means of the truncated Painlev6 expansion in this paper.One-parameter group transformations and one-parameter subgroup-invariant solutions for the extended KP equation are obtained.The consistent Riccati expansion(CRE) solvability of the KP equation is proved.Some interaction structures between soliton-cnoidal waves are obtained by CRE and several evolution graphs and density graphs are plotted.