In recent years, with the level of science and technology progress, largely to promote the development of animation techniques. Animated film is divided into two-dimensional animation and three-dimensional animation, ...In recent years, with the level of science and technology progress, largely to promote the development of animation techniques. Animated film is divided into two-dimensional animation and three-dimensional animation, both in the retention feature animated films, based on the performance of each with different strengths, thus forming a different artistic style. Wherein the two-dimensional animation is the most common one is the most basic form of expression in animation technology is relatively mature and complete, but because of the development of animation techniques, two-dimensional animation can not meet the needs of the audience. Thus, the effective combination of two-dimensional animation and three-dimensional animation technology, the advantages of integration between the two is particularly important, so that innovation in the form of screen performance, enhance audio-visual experience. In this paper, two-dimensional animation and three-dimensional animation skills fusion analysis and research, and put forward a number of specific observations, in order to learn.展开更多
By utilizing a 3-D atmospheric circulation resolving method, the authors studied the air-sea interactive linkages between the tropical Indian Ocean and the Pacific Ocean in 1979-2008 E1 Nifio-Southern Oscillation (E...By utilizing a 3-D atmospheric circulation resolving method, the authors studied the air-sea interactive linkages between the tropical Indian Ocean and the Pacific Ocean in 1979-2008 E1 Nifio-Southern Oscillation (ENSO) events. Their findings showed that evident 3-D gear-coupling characteristics existed in the 1979-2008 ENSO events. Their resolving analyses also suggested that the general circulation showed stronger and wider sinking motions over the eastern Indian Ocean-western Pacific during the mature phase of 1979-2008 ENSO events, compared with the vertical velocities from the U.S. National Centers for Enviornmental Prediction (NCEP) reanalysis data. With their 3-D analysis method, the vertical velocity was resolved by two components, i.e. zonal and meridional components. It was found that the zonal component of the vertical velocities showed a strong sinking motion while the meridional components showed an upward motion during the prevailing phases of the ENSO events. In the tropics, the zonal component of the vertical velocities was found greater than the meridional component, reflecting the dominant characteristics of the vertical velocity, and the overall outcomes showed a strong sinking motion, although the two components also partially offset each other in the processes. Compared with the vertical velocities from NCEP reanalysis, the vertical motions calculated with the 3-D resolving analysis method demonstrate some advantages.展开更多
We present some possible application of ALICE in the context of a possible attraction of pupils (especially girls) in early programming course. Our examples presented in the paper are fully explained on the base of [1].
The quantitative analysis shows that no theoretical model for 3-d magnetoelastic bodies, in literatures to date, can commonly simulate two kinds of distinct experimental phenomena on magnetoelastic interaction of ferr...The quantitative analysis shows that no theoretical model for 3-d magnetoelastic bodies, in literatures to date, can commonly simulate two kinds of distinct experimental phenomena on magnetoelastic interaction of ferromagnetic structures. This makes it difficult to effectively discribe the magnetoelastic mechanical behavior of structures with complex geometry, such as shells. Therefore, it is a key step for simulating magnetoelastic mechanical characteristics of structures with complex geometry to establish a 3-d model which also can commonly characterize the two distinct experimental phenomena. A theoretical model for three dimension magnetizable elastic bodies, which is commonly suitable for the two kinds of experimental phenomena on magnetoelastic interaction of ferromagnetic plates, is presented by the variational principle for the total energy functional of the coupling system of the 3-d ferromagnetic bodies. It is found that for the case of linear isotropic magnetic materials, the magnetic forces obtained by this model include not only the body magnetic force which is the same as that got from the magnetic dipole model, but also a distribution of the magnetic traction on the surface of the magnetizable body. And the value of the traction is equal to the jumping one of the Faraday electromagnetic stress on the two sides of the surface, which does not appear in any model, such as magnetic dipole model and axiomatic model.展开更多
The anadromous fish can pass through turbines of run-of-the-river hydropower stations to reach the downstream watershed, but their mortality is significant because of the complex turbine structure, the fast-rotating r...The anadromous fish can pass through turbines of run-of-the-river hydropower stations to reach the downstream watershed, but their mortality is significant because of the complex turbine structure, the fast-rotating runner, and the special flow patterns. Numerical simulations of the dynamics of fish passing are a challenging task, because the fish motion in the turbines involves a strong fluid-structure interaction (FSI). In this paper, the 3-D immersed boundary-lattice Boltzmann (IB-LB) coupling scheme is proposed to treat the FSI between the water and the fish. The process of one fish and three fish passing through a tubular turbine is simulated on a graphics processing unit (GPU) platform. The fish motion postures (translation and rotation), the fish body pressure distributions and histories are analyzed, and the results are consistent with the previous studies. This paper presents the IB-LB models, the simulation procedures, the specific treatments, and related results, to demonstrate the effectiveness of the IB-LB coupling scheme in simulating FSI problems and its application prospects in developing fish-friendly turbines.展开更多
文摘In recent years, with the level of science and technology progress, largely to promote the development of animation techniques. Animated film is divided into two-dimensional animation and three-dimensional animation, both in the retention feature animated films, based on the performance of each with different strengths, thus forming a different artistic style. Wherein the two-dimensional animation is the most common one is the most basic form of expression in animation technology is relatively mature and complete, but because of the development of animation techniques, two-dimensional animation can not meet the needs of the audience. Thus, the effective combination of two-dimensional animation and three-dimensional animation technology, the advantages of integration between the two is particularly important, so that innovation in the form of screen performance, enhance audio-visual experience. In this paper, two-dimensional animation and three-dimensional animation skills fusion analysis and research, and put forward a number of specific observations, in order to learn.
基金Key knowledge innovation research project (KZCX2-YW-Q11-01)973 project (2006CB403600)National Natural Science Foundation of China project (40805034)
文摘By utilizing a 3-D atmospheric circulation resolving method, the authors studied the air-sea interactive linkages between the tropical Indian Ocean and the Pacific Ocean in 1979-2008 E1 Nifio-Southern Oscillation (ENSO) events. Their findings showed that evident 3-D gear-coupling characteristics existed in the 1979-2008 ENSO events. Their resolving analyses also suggested that the general circulation showed stronger and wider sinking motions over the eastern Indian Ocean-western Pacific during the mature phase of 1979-2008 ENSO events, compared with the vertical velocities from the U.S. National Centers for Enviornmental Prediction (NCEP) reanalysis data. With their 3-D analysis method, the vertical velocity was resolved by two components, i.e. zonal and meridional components. It was found that the zonal component of the vertical velocities showed a strong sinking motion while the meridional components showed an upward motion during the prevailing phases of the ENSO events. In the tropics, the zonal component of the vertical velocities was found greater than the meridional component, reflecting the dominant characteristics of the vertical velocity, and the overall outcomes showed a strong sinking motion, although the two components also partially offset each other in the processes. Compared with the vertical velocities from NCEP reanalysis, the vertical motions calculated with the 3-D resolving analysis method demonstrate some advantages.
文摘We present some possible application of ALICE in the context of a possible attraction of pupils (especially girls) in early programming course. Our examples presented in the paper are fully explained on the base of [1].
基金Project supported by the National Natural Science Foundation of China (Grant No. 19572031)the National Science Fundation for Outstanding Young Scientiests in Chinaa united foundation of the State Education Committee of China and National Natural
文摘The quantitative analysis shows that no theoretical model for 3-d magnetoelastic bodies, in literatures to date, can commonly simulate two kinds of distinct experimental phenomena on magnetoelastic interaction of ferromagnetic structures. This makes it difficult to effectively discribe the magnetoelastic mechanical behavior of structures with complex geometry, such as shells. Therefore, it is a key step for simulating magnetoelastic mechanical characteristics of structures with complex geometry to establish a 3-d model which also can commonly characterize the two distinct experimental phenomena. A theoretical model for three dimension magnetizable elastic bodies, which is commonly suitable for the two kinds of experimental phenomena on magnetoelastic interaction of ferromagnetic plates, is presented by the variational principle for the total energy functional of the coupling system of the 3-d ferromagnetic bodies. It is found that for the case of linear isotropic magnetic materials, the magnetic forces obtained by this model include not only the body magnetic force which is the same as that got from the magnetic dipole model, but also a distribution of the magnetic traction on the surface of the magnetizable body. And the value of the traction is equal to the jumping one of the Faraday electromagnetic stress on the two sides of the surface, which does not appear in any model, such as magnetic dipole model and axiomatic model.
基金supported by the National Natural Science Foundation of China(Grant Nos.51839008,51579187 and 11172219)supported by the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20130141110013).
文摘The anadromous fish can pass through turbines of run-of-the-river hydropower stations to reach the downstream watershed, but their mortality is significant because of the complex turbine structure, the fast-rotating runner, and the special flow patterns. Numerical simulations of the dynamics of fish passing are a challenging task, because the fish motion in the turbines involves a strong fluid-structure interaction (FSI). In this paper, the 3-D immersed boundary-lattice Boltzmann (IB-LB) coupling scheme is proposed to treat the FSI between the water and the fish. The process of one fish and three fish passing through a tubular turbine is simulated on a graphics processing unit (GPU) platform. The fish motion postures (translation and rotation), the fish body pressure distributions and histories are analyzed, and the results are consistent with the previous studies. This paper presents the IB-LB models, the simulation procedures, the specific treatments, and related results, to demonstrate the effectiveness of the IB-LB coupling scheme in simulating FSI problems and its application prospects in developing fish-friendly turbines.