BACKGROUND Liver disease indicates any pathology that can harm or destroy the liver or prevent it from normal functioning.The global community has recently witnessed an increase in the mortality rate due to liver dise...BACKGROUND Liver disease indicates any pathology that can harm or destroy the liver or prevent it from normal functioning.The global community has recently witnessed an increase in the mortality rate due to liver disease.This could be attributed to many factors,among which are human habits,awareness issues,poor healthcare,and late detection.To curb the growing threats from liver disease,early detection is critical to help reduce the risks and improve treatment outcome.Emerging technologies such as machine learning,as shown in this study,could be deployed to assist in enhancing its prediction and treatment.AIM To present a more efficient system for timely prediction of liver disease using a hybrid eXtreme Gradient Boosting model with hyperparameter tuning with a view to assist in early detection,diagnosis,and reduction of risks and mortality associated with the disease.METHODS The dataset used in this study consisted of 416 people with liver problems and 167 with no such history.The data were collected from the state of Andhra Pradesh,India,through https://www.kaggle.com/datasets/uciml/indian-liver-patientrecords.The population was divided into two sets depending on the disease state of the patient.This binary information was recorded in the attribute"is_patient".RESULTS The results indicated that the chi-square automated interaction detection and classification and regression trees models achieved an accuracy level of 71.36%and 73.24%,respectively,which was much better than the conventional method.The proposed solution would assist patients and physicians in tackling the problem of liver disease and ensuring that cases are detected early to prevent it from developing into cirrhosis(scarring)and to enhance the survival of patients.The study showed the potential of machine learning in health care,especially as it concerns disease prediction and monitoring.CONCLUSION This study contributed to the knowledge of machine learning application to health and to the efforts toward combating the problem of liver disease.However,relevant authorities have to invest more into machine learning research and other health technologies to maximize their potential.展开更多
In his work, was applied crossings between pairs of variables, homogeneity test and technical exhaustive AID (Automatic Interaction Detection) for formation of groups second sample each of the following deficiencies...In his work, was applied crossings between pairs of variables, homogeneity test and technical exhaustive AID (Automatic Interaction Detection) for formation of groups second sample each of the following deficiencies: see, listen, move and intellectual from database obtained from the 2010 Population Census data sample (respondents Complete Questionnaire) formed by 20,635,472 people interviewed all over the country with the objective of studying relationship between different variables such as disability, level of education, gender, income in minimum wages among others.展开更多
Background: In the past decades, studies on infant anemia have mainly focused on rural areas of China. With the increasing heterogeneity of population in recent years, available information on infant anemia is inconc...Background: In the past decades, studies on infant anemia have mainly focused on rural areas of China. With the increasing heterogeneity of population in recent years, available information on infant anemia is inconclusive in large cities of China, especially with comparison between native residents and floating population. This population-based cross-sectional study was implemented to determine the anemic status of infants as well as the risk factors in a representative downtown area of Beijing. Methods: As useful methods to build a predictive model, Chi-squared automatic interaction detection (CHAID) decision tree analysis and logistic regression analysis were introduced to explore risk factors of infant anemia. A total of 1091 infants aged 6-12 months together with their parents/caregivers living at Heping Avenue Subdistrict of Beijing were surveyed from January 1,2013 to December 31, 2014. Results: The prevalence of anemia was 12.60% with a range of 3.47%-40.00% in different subgroup characteristics. The CHAID decision tree model has demonstrated multilevel interaction among risk factors through stepwise pathways to detect anemia. Besides the three predictors identified by logistic regression model including maternal anemia during pregnancy, exclusive breastfeeding in the first 6 months, and floating population, CHAID decision tree analysis also identified the fourth risk factor, the maternal educational level, with higher overall classification accuracy and larger area below the receiver operating characteristic curve. Conclusions: The infant anemic status in metropolis is complex and should be carefully considered by the basic health care practitioners. CHAID decision tree analysis has demonstrated a better performance in hierarchical analysis of population with great heterogeneity. Risk factors identified by this study might be meaningful in the early detection and prompt treatment of infant anemia in large cities.展开更多
The distance dynamics model is excellent tool for uncovering the community structure of a complex network. However, one issue that must be addressed by this model is its very long computation time in large-scale netwo...The distance dynamics model is excellent tool for uncovering the community structure of a complex network. However, one issue that must be addressed by this model is its very long computation time in large-scale networks. To identify the community structure of a large-scale network with high speed and high quality, in this paper, we propose a fast community detection algorithm, the F-Attractor, which is based on the distance dynamics model. The main contributions of the F-Attractor are as follows. First, we propose the use of two prejudgment rules from two different perspectives: node and edge. Based on these two rules, we develop a strategy of internal edge prejudgment for predicting the internal edges of the network. Internal edge prejudgment can reduce the number of edges and their neighbors that participate in the distance dynamics model. Second, we introduce a triangle distance to further enhance the speed of the interaction process in the distance dynamics model. This triangle distance uses two known distances to measure a third distance without any extra computation. We combine the above techniques to improve the distance dynamics model and then describe the community detection process of the F-Attractor. The results of an extensive series of experiments demonstrate that the F-Attractor offers high-speed community detection and high partition quality.展开更多
Facing the escalating effects of climate change,it is critical to improve the prediction and understanding of the hurricane evacuation decisions made by households in order to enhance emergency management.Current stud...Facing the escalating effects of climate change,it is critical to improve the prediction and understanding of the hurricane evacuation decisions made by households in order to enhance emergency management.Current studies in this area often have relied on psychology-driven linear models,which frequently exhibited limitations in practice.The present study proposed a novel interpretable machine learning approach to predict household-level evacuation decisions by leveraging easily accessible demographic and resource-related predictors,compared to existing models that mainly rely on psychological factors.An enhanced logistic regression model(that is,an interpretable machine learning approach) was developed for accurate predictions by automatically accounting for nonlinearities and interactions(that is,univariate and bivariate threshold effects).Specifically,nonlinearity and interaction detection were enabled by low-depth decision trees,which offer transparent model structure and robustness.A survey dataset collected in the aftermath of Hurricanes Katrina and Rita,two of the most intense tropical storms of the last two decades,was employed to test the new methodology.The findings show that,when predicting the households’ evacuation decisions,the enhanced logistic regression model outperformed previous linear models in terms of both model fit and predictive capability.This outcome suggests that our proposed methodology could provide a new tool and framework for emergency management authorities to improve the prediction of evacuation traffic demands in a timely and accurate manner.展开更多
Human–object interaction(HOI)detection is crucial for human-centric image understanding which aims to infer human,action,object triplets within an image.Recent studies often exploit visual features and the spatial co...Human–object interaction(HOI)detection is crucial for human-centric image understanding which aims to infer human,action,object triplets within an image.Recent studies often exploit visual features and the spatial configuration of a human–object pair in order to learn the action linking the human and object in the pair.We argue that such a paradigm of pairwise feature extraction and action inference can be applied not only at the whole human and object instance level,but also at the part level at which a body part interacts with an object,and at the semantic level by considering the semantic label of an object along with human appearance and human–object spatial configuration,to infer the action.We thus propose a multi-level pairwise feature network(PFNet)for detecting human–object interactions.The network consists of three parallel streams to characterize HOI utilizing pairwise features at the above three levels;the three streams are finally fused to give the action prediction.Extensive experiments show that our proposed PFNet outperforms other state-of-the-art methods on the VCOCO dataset and achieves comparable results to the state-of-the-art on the HICO-DET dataset.展开更多
文摘BACKGROUND Liver disease indicates any pathology that can harm or destroy the liver or prevent it from normal functioning.The global community has recently witnessed an increase in the mortality rate due to liver disease.This could be attributed to many factors,among which are human habits,awareness issues,poor healthcare,and late detection.To curb the growing threats from liver disease,early detection is critical to help reduce the risks and improve treatment outcome.Emerging technologies such as machine learning,as shown in this study,could be deployed to assist in enhancing its prediction and treatment.AIM To present a more efficient system for timely prediction of liver disease using a hybrid eXtreme Gradient Boosting model with hyperparameter tuning with a view to assist in early detection,diagnosis,and reduction of risks and mortality associated with the disease.METHODS The dataset used in this study consisted of 416 people with liver problems and 167 with no such history.The data were collected from the state of Andhra Pradesh,India,through https://www.kaggle.com/datasets/uciml/indian-liver-patientrecords.The population was divided into two sets depending on the disease state of the patient.This binary information was recorded in the attribute"is_patient".RESULTS The results indicated that the chi-square automated interaction detection and classification and regression trees models achieved an accuracy level of 71.36%and 73.24%,respectively,which was much better than the conventional method.The proposed solution would assist patients and physicians in tackling the problem of liver disease and ensuring that cases are detected early to prevent it from developing into cirrhosis(scarring)and to enhance the survival of patients.The study showed the potential of machine learning in health care,especially as it concerns disease prediction and monitoring.CONCLUSION This study contributed to the knowledge of machine learning application to health and to the efforts toward combating the problem of liver disease.However,relevant authorities have to invest more into machine learning research and other health technologies to maximize their potential.
文摘In his work, was applied crossings between pairs of variables, homogeneity test and technical exhaustive AID (Automatic Interaction Detection) for formation of groups second sample each of the following deficiencies: see, listen, move and intellectual from database obtained from the 2010 Population Census data sample (respondents Complete Questionnaire) formed by 20,635,472 people interviewed all over the country with the objective of studying relationship between different variables such as disability, level of education, gender, income in minimum wages among others.
文摘Background: In the past decades, studies on infant anemia have mainly focused on rural areas of China. With the increasing heterogeneity of population in recent years, available information on infant anemia is inconclusive in large cities of China, especially with comparison between native residents and floating population. This population-based cross-sectional study was implemented to determine the anemic status of infants as well as the risk factors in a representative downtown area of Beijing. Methods: As useful methods to build a predictive model, Chi-squared automatic interaction detection (CHAID) decision tree analysis and logistic regression analysis were introduced to explore risk factors of infant anemia. A total of 1091 infants aged 6-12 months together with their parents/caregivers living at Heping Avenue Subdistrict of Beijing were surveyed from January 1,2013 to December 31, 2014. Results: The prevalence of anemia was 12.60% with a range of 3.47%-40.00% in different subgroup characteristics. The CHAID decision tree model has demonstrated multilevel interaction among risk factors through stepwise pathways to detect anemia. Besides the three predictors identified by logistic regression model including maternal anemia during pregnancy, exclusive breastfeeding in the first 6 months, and floating population, CHAID decision tree analysis also identified the fourth risk factor, the maternal educational level, with higher overall classification accuracy and larger area below the receiver operating characteristic curve. Conclusions: The infant anemic status in metropolis is complex and should be carefully considered by the basic health care practitioners. CHAID decision tree analysis has demonstrated a better performance in hierarchical analysis of population with great heterogeneity. Risk factors identified by this study might be meaningful in the early detection and prompt treatment of infant anemia in large cities.
基金supported by the National Natural Science Foundation of China(Nos.61573299,61174140,61472127,and 61272395)the Social Science Foundation of Hunan Province(No.16ZDA07)+2 种基金China Postdoctoral Science Foundation(Nos.2013M540628and 2014T70767)the Natural Science Foundation of Hunan Province(Nos.14JJ3107 and 2017JJ5064)the Excellent Youth Scholars Project of Hunan Province(No.15B087)
文摘The distance dynamics model is excellent tool for uncovering the community structure of a complex network. However, one issue that must be addressed by this model is its very long computation time in large-scale networks. To identify the community structure of a large-scale network with high speed and high quality, in this paper, we propose a fast community detection algorithm, the F-Attractor, which is based on the distance dynamics model. The main contributions of the F-Attractor are as follows. First, we propose the use of two prejudgment rules from two different perspectives: node and edge. Based on these two rules, we develop a strategy of internal edge prejudgment for predicting the internal edges of the network. Internal edge prejudgment can reduce the number of edges and their neighbors that participate in the distance dynamics model. Second, we introduce a triangle distance to further enhance the speed of the interaction process in the distance dynamics model. This triangle distance uses two known distances to measure a third distance without any extra computation. We combine the above techniques to improve the distance dynamics model and then describe the community detection process of the F-Attractor. The results of an extensive series of experiments demonstrate that the F-Attractor offers high-speed community detection and high partition quality.
基金supported by the National Science Foundation under Grant Nos.2303578,2303579, 05 27699,0838654,and 1212790by an Early-Career Research Fellowship from the Gulf Research Program of the National Academies of Sciences,Engineering,and Medicine
文摘Facing the escalating effects of climate change,it is critical to improve the prediction and understanding of the hurricane evacuation decisions made by households in order to enhance emergency management.Current studies in this area often have relied on psychology-driven linear models,which frequently exhibited limitations in practice.The present study proposed a novel interpretable machine learning approach to predict household-level evacuation decisions by leveraging easily accessible demographic and resource-related predictors,compared to existing models that mainly rely on psychological factors.An enhanced logistic regression model(that is,an interpretable machine learning approach) was developed for accurate predictions by automatically accounting for nonlinearities and interactions(that is,univariate and bivariate threshold effects).Specifically,nonlinearity and interaction detection were enabled by low-depth decision trees,which offer transparent model structure and robustness.A survey dataset collected in the aftermath of Hurricanes Katrina and Rita,two of the most intense tropical storms of the last two decades,was employed to test the new methodology.The findings show that,when predicting the households’ evacuation decisions,the enhanced logistic regression model outperformed previous linear models in terms of both model fit and predictive capability.This outcome suggests that our proposed methodology could provide a new tool and framework for emergency management authorities to improve the prediction of evacuation traffic demands in a timely and accurate manner.
基金supported by the National Natural Science Foundation of China(Project No.61902210),a Research Grant of Beijing Higher Institution Engineering Research Center,and the Tsinghua–Tencent Joint Laboratory for Internet Innovation Technology.
文摘Human–object interaction(HOI)detection is crucial for human-centric image understanding which aims to infer human,action,object triplets within an image.Recent studies often exploit visual features and the spatial configuration of a human–object pair in order to learn the action linking the human and object in the pair.We argue that such a paradigm of pairwise feature extraction and action inference can be applied not only at the whole human and object instance level,but also at the part level at which a body part interacts with an object,and at the semantic level by considering the semantic label of an object along with human appearance and human–object spatial configuration,to infer the action.We thus propose a multi-level pairwise feature network(PFNet)for detecting human–object interactions.The network consists of three parallel streams to characterize HOI utilizing pairwise features at the above three levels;the three streams are finally fused to give the action prediction.Extensive experiments show that our proposed PFNet outperforms other state-of-the-art methods on the VCOCO dataset and achieves comparable results to the state-of-the-art on the HICO-DET dataset.