In recent years, a large number of geotechnical engineering projectshave been completed or under construction in China, such asthe Three Gorges Dam Project, Expressway Network Plan, South-to-North Water Diversion Proj...In recent years, a large number of geotechnical engineering projectshave been completed or under construction in China, such asthe Three Gorges Dam Project, Expressway Network Plan, South-to-North Water Diversion Project, West-to-East Gas Pipeline Project,etc. (Wang, 2003; Li, 2010; Huang, 2011; She and Lin, 2014). Theconstruction of large-scale geotechnical engineering not onlybrings huge economic benefits, but also causes large interferenceto the lithosphere and hydrosphere that we rely on for survival(Wang et al., 2005). This paper focuses on the interaction mechanismof rock engineering and geo-environments in the fields of urbanunderground space utilization, natural gas hydrate exploitationand high-level radioactive waste disposal.展开更多
As cloud service becomes more and more capable, available and powerful, wiseCIO has emerged from an innovative roadmap toward archival Content Management Service (aCMS) and massive Content Delivery Service (mCDS) in s...As cloud service becomes more and more capable, available and powerful, wiseCIO has emerged from an innovative roadmap toward archival Content Management Service (aCMS) and massive Content Delivery Service (mCDS) in support of Anything-as-a-Service (XaaS) via Digital Archiving and Transformed Analytics (DATA);DATA aims to automate UBC with FAST solutions throughout a feasible, analytical, scalable and testable approach. This paper, based on the novel wiseCIO (web-based intelligent service engaging Cloud Intelligence Outlet), presents digital archiving and transformed analytics via machine learning automata for intelligent UBC processes to liaise with Universal interface for human-computer interaction, enable Brewing aggregation (differing from traditional web browsing), and engage Centered user experience. As one of the most practical aspects of artificial intelligence, machine learning is applied to analytical model building and massive and/or multidimensional Online Analytical Processing (mOLAP) for more intelligent cloud service with little explicit coding required. DATA is central to useful information via archival transformation and analytics, and utilizable intelligence for Business, Education and Entertainment (iBEE) in support of decision-making. As a result, DATA orchestrates wiseCIO to promote ACTiVE XaaS that enables accessibility, contextuality and traceability of information for vast engagement with various cloud services, such as aCMS (archival Content Management Service), COSA (Context-Oriented Screening Aggregation), DASH (Deliveries Assembled for fast Search and Hits), OLAS (Online Learning via Analytical Synthesis), REAP (Rapid Extension and Active Presentation), and SPOT (Special Points On Top) with great ease.展开更多
Many specified business needs in enterprise context cannot be effectively satisfied using current business process technology.This phenomenon is called the "long tail" of business processes.In addition,more ...Many specified business needs in enterprise context cannot be effectively satisfied using current business process technology.This phenomenon is called the "long tail" of business processes.In addition,more and more business applications need to be accessed from mobile devices such as smartphones by enterprise end users.This paper attempts to solve both two challenges above.A lightweight event-driven process model is proposed aiming at satisfying the spontaneous business needs in enterprise.And we design an innovative wizard,which works like a tutorial,guiding end users in creating this lightweight process model.Moreover,end users are allowed to interact with the process created by themselves on smartphones.Finally,the usability of our approach was evaluated on a small set of users in a real business scenario.The results show that end users can effectively build their personalized business processes using our approach and interact with them in mobile environment.展开更多
Dissolved organic matter(DOM) is ubiquitous in the environment and has high reactivity.Once engineered nanoparticles(ENPs) are released into natural systems, interactions of DOM with ENPs may significantly affect ...Dissolved organic matter(DOM) is ubiquitous in the environment and has high reactivity.Once engineered nanoparticles(ENPs) are released into natural systems, interactions of DOM with ENPs may significantly affect the fate and transport of ENPs, as well as the bioavailability and toxicity of ENPs to organisms. However, because of the complexity of DOM and the shortage of useful characterization methods, large knowledge gaps exist in our understanding of the interactions between DOM and ENPs. In this article, we systematically reviewed the interactions between DOM and ENPs, discussed the effects of DOM on the environmental behavior of ENPs, and described the changes in bioavailability and toxicity of ENPs caused by DOM. Critical evaluations of published references suggest further need for assessing and predicting the influences of DOM on the transport,transformation, bioavailability, and toxicity of ENPs in the environment.展开更多
We propose a simple algorithm for the precise engineering of multi-channel gain profile of Raman amplifier. By employing a linear approximation in the pump interaction calculation, together with a semi-empirical pump ...We propose a simple algorithm for the precise engineering of multi-channel gain profile of Raman amplifier. By employing a linear approximation in the pump interaction calculation, together with a semi-empirical pump power correction using the simplistic output signal spectrum measurement, excellent gain engineering capability has been demonstrated for various target gain profiles, within +/- 0.4dB of error.展开更多
Knowledge on the interactions between engineered nanomaterials(ENMs) and biological systems is critical both for the assessment of biological effects of ENMs and for the rational design of ENM-based products. However,...Knowledge on the interactions between engineered nanomaterials(ENMs) and biological systems is critical both for the assessment of biological effects of ENMs and for the rational design of ENM-based products. However, probing the events that occur at the nano-bio interface remains extremely challenging due to their complex and dynamic nature. So far, the understanding of mechanisms underlying nano-bio interactions has been mainly limited by the lack of proper analytical techniques with sufficient sensitivity, selectivity and resolution for characterization of nano-bio interface events. Moreover, many classic bioanalytical methods are not suitable for direct measurement of nano-bio interface interactions. These have made establishing analytical methodologies for systematic and comprehensive study of nano-bio interface one of the most focused areas in nanobiology. In this review we have discussed some representative developments regarding analytical techniques for nano-bio interface characterization, including the improvements of traditional methods and the emergence of powerful new technologies. These developments have allowed ultrasensitive, real-time analysis of interactions between ENMs and biomolecules, transformations of ENMs in biological environment, and impacts of ENMs on living systems on molecular or cellular level.展开更多
文摘In recent years, a large number of geotechnical engineering projectshave been completed or under construction in China, such asthe Three Gorges Dam Project, Expressway Network Plan, South-to-North Water Diversion Project, West-to-East Gas Pipeline Project,etc. (Wang, 2003; Li, 2010; Huang, 2011; She and Lin, 2014). Theconstruction of large-scale geotechnical engineering not onlybrings huge economic benefits, but also causes large interferenceto the lithosphere and hydrosphere that we rely on for survival(Wang et al., 2005). This paper focuses on the interaction mechanismof rock engineering and geo-environments in the fields of urbanunderground space utilization, natural gas hydrate exploitationand high-level radioactive waste disposal.
文摘As cloud service becomes more and more capable, available and powerful, wiseCIO has emerged from an innovative roadmap toward archival Content Management Service (aCMS) and massive Content Delivery Service (mCDS) in support of Anything-as-a-Service (XaaS) via Digital Archiving and Transformed Analytics (DATA);DATA aims to automate UBC with FAST solutions throughout a feasible, analytical, scalable and testable approach. This paper, based on the novel wiseCIO (web-based intelligent service engaging Cloud Intelligence Outlet), presents digital archiving and transformed analytics via machine learning automata for intelligent UBC processes to liaise with Universal interface for human-computer interaction, enable Brewing aggregation (differing from traditional web browsing), and engage Centered user experience. As one of the most practical aspects of artificial intelligence, machine learning is applied to analytical model building and massive and/or multidimensional Online Analytical Processing (mOLAP) for more intelligent cloud service with little explicit coding required. DATA is central to useful information via archival transformation and analytics, and utilizable intelligence for Business, Education and Entertainment (iBEE) in support of decision-making. As a result, DATA orchestrates wiseCIO to promote ACTiVE XaaS that enables accessibility, contextuality and traceability of information for vast engagement with various cloud services, such as aCMS (archival Content Management Service), COSA (Context-Oriented Screening Aggregation), DASH (Deliveries Assembled for fast Search and Hits), OLAS (Online Learning via Analytical Synthesis), REAP (Rapid Extension and Active Presentation), and SPOT (Special Points On Top) with great ease.
基金supported by the National 973 Programs(Grant No.2013CB329102)the National Natural Science Foundation of China (Grant No.61003067)Key Project of National Natural Science Foundation of China (Grant No.61132001)
文摘Many specified business needs in enterprise context cannot be effectively satisfied using current business process technology.This phenomenon is called the "long tail" of business processes.In addition,more and more business applications need to be accessed from mobile devices such as smartphones by enterprise end users.This paper attempts to solve both two challenges above.A lightweight event-driven process model is proposed aiming at satisfying the spontaneous business needs in enterprise.And we design an innovative wizard,which works like a tutorial,guiding end users in creating this lightweight process model.Moreover,end users are allowed to interact with the process created by themselves on smartphones.Finally,the usability of our approach was evaluated on a small set of users in a real business scenario.The results show that end users can effectively build their personalized business processes using our approach and interact with them in mobile environment.
基金supported by the National Key Research and Development Program of China (2016YFA0203102)the National Natural Science Foundation of China (Nos. 21227012, 21337004, 21507147)
文摘Dissolved organic matter(DOM) is ubiquitous in the environment and has high reactivity.Once engineered nanoparticles(ENPs) are released into natural systems, interactions of DOM with ENPs may significantly affect the fate and transport of ENPs, as well as the bioavailability and toxicity of ENPs to organisms. However, because of the complexity of DOM and the shortage of useful characterization methods, large knowledge gaps exist in our understanding of the interactions between DOM and ENPs. In this article, we systematically reviewed the interactions between DOM and ENPs, discussed the effects of DOM on the environmental behavior of ENPs, and described the changes in bioavailability and toxicity of ENPs caused by DOM. Critical evaluations of published references suggest further need for assessing and predicting the influences of DOM on the transport,transformation, bioavailability, and toxicity of ENPs in the environment.
文摘We propose a simple algorithm for the precise engineering of multi-channel gain profile of Raman amplifier. By employing a linear approximation in the pump interaction calculation, together with a semi-empirical pump power correction using the simplistic output signal spectrum measurement, excellent gain engineering capability has been demonstrated for various target gain profiles, within +/- 0.4dB of error.
基金supported by the National Natural Science Foundation of China (21320102003, 31200752, 31661130152, 11435002)the National Distinguished Young Scientists Program (31325010)
文摘Knowledge on the interactions between engineered nanomaterials(ENMs) and biological systems is critical both for the assessment of biological effects of ENMs and for the rational design of ENM-based products. However, probing the events that occur at the nano-bio interface remains extremely challenging due to their complex and dynamic nature. So far, the understanding of mechanisms underlying nano-bio interactions has been mainly limited by the lack of proper analytical techniques with sufficient sensitivity, selectivity and resolution for characterization of nano-bio interface events. Moreover, many classic bioanalytical methods are not suitable for direct measurement of nano-bio interface interactions. These have made establishing analytical methodologies for systematic and comprehensive study of nano-bio interface one of the most focused areas in nanobiology. In this review we have discussed some representative developments regarding analytical techniques for nano-bio interface characterization, including the improvements of traditional methods and the emergence of powerful new technologies. These developments have allowed ultrasensitive, real-time analysis of interactions between ENMs and biomolecules, transformations of ENMs in biological environment, and impacts of ENMs on living systems on molecular or cellular level.