期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Interfacial Electronic Modulation of Dual-Monodispersed Pt–Ni_(3)S_(2) as Efficacious Bi-Functional Electrocatalysts for Concurrent H_(2) Evolution and Methanol Selective Oxidation
1
作者 Qianqian Zhao Bin Zhao +7 位作者 Xin Long Renfei Feng Mohsen Shakouri Alisa Paterson Qunfeng Xiao Yu Zhang Xian‑Zhu Fu Jing‑Li Luo 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期415-431,共17页
Constructing the efficacious and applicable bifunctional electrocatalysts and establishing out the mechanisms of organic electro-oxidation by replacing anodic oxygen evolution reaction(OER) are critical to the develop... Constructing the efficacious and applicable bifunctional electrocatalysts and establishing out the mechanisms of organic electro-oxidation by replacing anodic oxygen evolution reaction(OER) are critical to the development of electrochemicallydriven technologies for efficient hydrogen production and avoid CO_(2) emission. Herein, the hetero-nanocrystals between monodispersed Pt(~ 2 nm) and Ni_(3)S_(2)(~ 9.6 nm) are constructed as active electrocatalysts through interfacial electronic modulation, which exhibit superior bi-functional activities for methanol selective oxidation and H_(2) generation. The experimental and theoretical studies reveal that the asymmetrical charge distribution at Pt–Ni_(3)S_(2) could be modulated by the electronic interaction at the interface of dual-monodispersed heterojunctions, which thus promote the adsorption/desorption of the chemical intermediates at the interface. As a result, the selective conversion from CH_(3)OH to formate is accomplished at very low potentials(1.45 V) to attain 100 m A cm^(-2) with high electronic utilization rate(~ 98%) and without CO_(2) emission. Meanwhile, the Pt–Ni_(3)S_(2) can simultaneously exhibit a broad potential window with outstanding stability and large current densities for hydrogen evolution reaction(HER) at the cathode. Further, the excellent bi-functional performance is also indicated in the coupled methanol oxidation reaction(MOR)//HER reactor by only requiring a cell voltage of 1.60 V to achieve a current density of 50 m A cm^(-2) with good reusability. 展开更多
关键词 Dual-monodispersed heterostructure Electronic interactive modulation Reaction mechanism Methanol oxidation reaction Hydrogen generation
下载PDF
Comprehensive multi-omics analysis identified core molecular processes in esophageal cancer and revealed GNGT2 as a potential prognostic marker 被引量:3
2
作者 Guo-Min Liu Xuan Ji +5 位作者 Tian-Cheng Lu Li-Wei Duan Wen-Yuan Jia Yun Liu Mao-Lei Sun Yun-Gang Luo 《World Journal of Gastroenterology》 SCIE CAS 2019年第48期6890-6901,共12页
BACKGROUND Esophageal cancer is one of the most poorly diagnosed and fatal cancers in the world.Although a series of studies on esophageal cancer have been reported,the molecular pathogenesis of the disease remains el... BACKGROUND Esophageal cancer is one of the most poorly diagnosed and fatal cancers in the world.Although a series of studies on esophageal cancer have been reported,the molecular pathogenesis of the disease remains elusive.AIM To investigate comprehensively the molecular process of esophageal cancer.METHODS Differential expression analysis was performed to identify differentially expressed genes(DEGs)in different stages of esophageal cancer from The Cancer Genome Atlas data.Exacting gene interaction modules were generated,and hub genes in the module interaction network were found.Further,through survival analysis,methylation analysis,pivot analysis,and enrichment analysis,some important molecules and related functions/pathways were identified to elucidate potential mechanisms in esophageal cancer.RESULTS A total of 7457 DEGs and 14 gene interaction modules were identified.These module genes were significantly involved in the positive regulation of protein transport,gastric acid secretion,insulin-like growth factor receptor binding,and other biological processes as well as p53 signaling pathway,epidermal growth factor signaling pathway,and epidermal growth factor receptor signaling pathway.Transcription factors(including hypoxia inducible factor 1A)and noncoding RNAs(including colorectal differentially expressed and hsa-miR-330-3p)that significantly regulate dysfunction modules were identified.Survival analysis showed that G protein subunit gamma transducin 2(GNGT2)was closely related to survival of esophageal cancer.DEGs with strong methylation regulation ability were identified,including SST and SH3GL2.Furthermore,the expression of GNGT2 was evaluated by quantitative real time polymerase chain reaction,and the results showed that GNGT2 expression was significantly upregulated in esophageal cancer patient samples and cell lines.Moreover,cell counting kit-8 assay revealed that GNGT2 could promote the proliferation of esophageal cancer cell lines.CONCLUSION This study not only revealed the potential regulatory factors involved in the development of esophageal cancer but also deepens our understanding of its underlying mechanism. 展开更多
关键词 Esophageal cancer Molecular pathogenesis Enrichment analysis Gene interaction module Regulatory factors GNGT2
下载PDF
The decadally modulating eddy field in the upstream Kuroshio Extension and its related mechanisms 被引量:2
3
作者 WANG Shihong LIU Zhiliang +1 位作者 PANG Chongguang LIU Huiqing 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第5期9-17,共9页
Both the level of the high-frequency eddy kinetic energy(HF-EKE) and the energy-containing scale in the upstream Kuroshio Extension(KE) undergo a well-defined decadal modulation, which correlates well with the dec... Both the level of the high-frequency eddy kinetic energy(HF-EKE) and the energy-containing scale in the upstream Kuroshio Extension(KE) undergo a well-defined decadal modulation, which correlates well with the decadal KE path variability. The HF-EKE level and the energy-containing scales will increase with unstable KE path and decrease with stable KE path. Also the mesoscale eddies are a little meridionally elongated in the stable state, while they are much zonally elongated in the unstable state. The local baroclinic instability and the barotropic instability associated with the decadal modulation of HF-EKE have been investigated. The results show that the baroclinic instability is stronger in the stable state than that in the unstable state, with a shorter characteristic temporal scale and a larger characteristic spatial scale. Meanwhile, the regional-averaged barotropic conversion rate is larger in the unstable state than that in the stable state. The results also demonstrate that the baroclinic instability is not the dominant mechanism influencing the decadal modulation of the mesoscale eddy field, while the barotropic instability makes a positive contribution to the decadal modulation. 展开更多
关键词 Kuroshio Extension mesoscale eddy decadal modulation baroclinic instability barotropic energy conversion rate nonlinear eddy-eddy interaction
下载PDF
Topological phase in one-dimensional Rashba wire
4
作者 汪萨克 汪军 刘军丰 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第7期393-400,共8页
We study the possible topological phase in a one-dimensional(1D) quantum wire with an oscillating Rashba spin–orbital coupling in real space. It is shown that there are a pair of particle–hole symmetric gaps formi... We study the possible topological phase in a one-dimensional(1D) quantum wire with an oscillating Rashba spin–orbital coupling in real space. It is shown that there are a pair of particle–hole symmetric gaps forming in the bulk energy band and fractional boundary states residing in the gap when the system has an inversion symmetry. These states are topologically nontrivial and can be characterized by a quantized Berry phase ±π or nonzero Chern number through dimensional extension. When the Rashba spin–orbital coupling varies slowly with time, the system can pump out 2 charges in a pumping cycle because of the spin flip effect. This quantized pumping is protected by topology and is robust against moderate disorders as long as the disorder strength does not exceed the opened energy gap. 展开更多
关键词 one-dimensional topological phase Rashba spin–orbit interaction spatial modulation quantized pump
下载PDF
Co-regulated Protein Functional Modules with Varying Activities in Dynamic PPI Networks 被引量:2
5
作者 Yuan Zhang Nan Du +2 位作者 Kang L Kebin Jia Aidong Zhang 《Tsinghua Science and Technology》 SCIE EI CAS 2013年第5期530-540,共11页
Current methods for the detection of differential gene expression focus on finding individual genes that may be responsible for certain diseases or external irritants. However, for common genetic diseases, multiple ge... Current methods for the detection of differential gene expression focus on finding individual genes that may be responsible for certain diseases or external irritants. However, for common genetic diseases, multiple genes and their interactions should be understood and treated together during the exploration of disease causes and possible drug design. The present study focuses on analyzing the dynamic patterns of co-regulated modules during biological progression and determining those having remarkably varying activities, using the yeast cell cycle as a case study. We first constructed dynamic active protein-protein interaction networks by modeling the activity of proteins and assembling the dynamic co-regulation protein network at each time point. The dynamic active modules were detected using a method based on the Bayesian graphical model and then the modules with the most varied dispersion of clustering coefficients, which could be responsible for the dynamic mechanism of the cell cycle, were identified. Comparison of results from our functional module detection with the state-of-art functional module detection methods and validation of the ranking of activities of functional modules using GO annotations demonstrate the efficacy of our method for narrowing the scope of possible essential responding modules that could provide multiple targets for biologists to further experimentally validate. 展开更多
关键词 dynamic protein-protein interaction networks dynamic active modules varying activities Bayesian graphical mode
原文传递
Deletion of COM donor and acceptor domains and the interaction between modules in bacillomycin D produced by Bacillus amyloliquefaciens
6
作者 Ziyan Lv Wenjie Ma +5 位作者 Ping Zhang Zhaoxin Lu Libang Zhou Fanqiang Meng Zuwei Wang Xiaomei Bie 《Synthetic and Systems Biotechnology》 SCIE 2022年第3期989-1001,共13页
Bacillomycin D is a cyclic lipopeptide produced by Bacillus amyloliquefaciens fmbJ.At present,no relevant report has described the combinatorial biosynthesis of bacillomycin D.Due to the strong biosynthetic potential ... Bacillomycin D is a cyclic lipopeptide produced by Bacillus amyloliquefaciens fmbJ.At present,no relevant report has described the combinatorial biosynthesis of bacillomycin D.Due to the strong biosynthetic potential of the communication-mediating(COM)domains,its crosstalk between NRPS subunits has been studied to some extent,but the interaction of COM domain between modules is rarely reported.Therefore,in this study,we conducted the combinatorial biosynthesis of bacillomycin D through the deletion of the COM donor and acceptor domains between the modules and elucidated the interaction between the NRPS modules.The results showed that the deletion of the donor domain between modules 2 and 3 did not affect catalysis by upstream modules,but prevented downstream modules from catalysing the extension of the lipopeptide product,ultimately resulting in mutant complexes that could form linear dipeptides with the sequenceβ-NH_(2)FA-Asn-Tyr.However,the engineered hybrid bacillomycin D NRPSs lacking the donor domains between modules 3 and 4 and modules 6 and 7 could form multiple assembly lines that produced bacillomycin D and its analogs(linear tripeptides,cyclic hexapeptides and linear hexapeptides).In addition,all the acceptor domain deletion strains failed to produce bacillomycin D,only truncated peptides produced by module interruption(except for the acceptor domain deletion strains between modules 3 and 4,which also produced cyclic hexapeptides).In conclusion,deletion of the inter-module donor domains led to a more flexible hybrid biosynthetic system for the production of diverse peptide products;compared with the inter-subunit donor domain deletion strains that could only produce truncated peptides,the former had a greater biosynthetic capacity.Meanwhile,the acceptor domains between modules were an important part of module-module interactions and efficient communication within bacillomycin D synthetase. 展开更多
关键词 Bacillomycin D COM domain Interaction between modules Lipopeptide analogs
原文传递
Arabidopsis VQ10 interacts with WRKY8 to modulate basal defense against Botrytis cinerea 被引量:11
7
作者 Junqiu Chen Houping Wang +3 位作者 Yang Li Jinjing Pan Yanru Hu Diqiu Yu 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2018年第10期956-969,共14页
Recent studies in Arabidopsis have revealed that some vq motif-containing proteins physically interact with WRKY transcription factors; however, their specific biological functions are still poorly understood. In this... Recent studies in Arabidopsis have revealed that some vq motif-containing proteins physically interact with WRKY transcription factors; however, their specific biological functions are still poorly understood. In this study, we confirmed the interaction between VQ1o and WRKY8, and show that VQ1o and WRKY8 formed a complex in the plant cell nucleus. Yeast two-hybrid analysis showed that the middle region of WRKY8 and the vq motif of vqlo are critical for their interaction, and that this interaction promotes the DNA-binding activity of WRKY8. Further investigation revealed that the VqlO protein was exclusively localized in the nucleus, and VQ1o was predominantly expressed in siliques, vQ1o expression was strongly responsive to the necrotrophic fungal pathogen, Botrytis cinerea and defense-relatedhormones. Phenotypic analysis showed that disruption of VQlo increased mutant plants susceptibility to the fungal pathogen B. cinerea, whereas constitutive-expres- sion of VQlo enhanced resistance to B. cinerea. Consis- tent with these findings, expression of the defenserelated PLANT DEFENSIN1.2 (PDFt2) gene was decreased in vqlo mutant plants, after B. cinerea infection, but increased in vQ1o-overexpressing transgenic plants. Taken together, our findings provide evidence that VQlo physically interacts with WRKY8 and positively regulates plant basal resistance against the necrotrophic fungal pathogen B. cinerea. 展开更多
关键词 Arabidopsis VQ10 interacts with WRKY8 to modulate basal defense against Botrytis cinerea VQ
原文传递
Structure and function of the guanylate kinase-like domain of the MAGUK family scaffold proteins
8
作者 Jinwei ZHU Yuan SHANG +1 位作者 Jia CHEN Mingjie ZHANG 《Frontiers of physics》 SCIE CSCD 2012年第5期379-396,共18页
Membrane associated guanylate kinases (MAGUKs) are a family of scaffold proteins that play essential roles in organ development, cell-cell communication, cell polarity establishment and maintenance, and cellular sig... Membrane associated guanylate kinases (MAGUKs) are a family of scaffold proteins that play essential roles in organ development, cell-cell communication, cell polarity establishment and maintenance, and cellular signal transduction. Every member of the MAGUK family contains a guanylate kinase-like (GK) domain, which has evolved from the enzyme catalyzing GMP to GDP conversion to become a protein-protein interaction module with no enzymatic activity. Mutations of MAGUKs are linked to a number of human diseases, including autism and hereditary deafness. In this review, we summarize the structural basis governing cellular function of various members of the MAGUKs. In particular, we focus on recent discoveries of MAGUK GKs as specific phospho-protein interaction modules, and discuss functional implications and connections to human diseases of such regulated MAGUK GK/target interactions. 展开更多
关键词 MAGUK GK domain phospho-protein interaction module SYNAPSE neuronal disease
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部