In the present survey, various methods for the acoustic design of aeroengine nacelle are first briefly introduced along with the comments on their advantages and disadvantages for practi- cal application, and then det...In the present survey, various methods for the acoustic design of aeroengine nacelle are first briefly introduced along with the comments on their advantages and disadvantages for practi- cal application, and then detailed analysis and discussion focus on a kind of new method which is called "transfer element method" (TEM) with emphasis on its application in the following three problems: turbomachinery noise generations, sound transmission in ducts and radiation from the inlet and outlet of ducts, as well as the interaction between them. In the theoretical frame of the TEM, the solution of acoustic field in an infinite duct with stator sound source or liner is extended to that in a finite domain with all knows and unknowns on the interface plane, and the relevant acoustic field is solved by setting up matching equation. In addition, based on combining the TEM with the boundary element method (BEM) by establishing the pressure and its derivative con- tinuum conditions on the inlet and outlet surface, the sound radiation from the inlet and outlet of ducts can also be investigated. Finally, the effects of various interactions between the sound source and acoustic treatment have been discussed in this survey. The numerical examples indicate that it is quite important to consider the effect of such interactions on sound attenuation during the acoustic design of aeroengine nacelle.展开更多
基金the National Natural Science Foundation of China (No. 51106005)the National Basic Research Program of China (2012CB720201)
文摘In the present survey, various methods for the acoustic design of aeroengine nacelle are first briefly introduced along with the comments on their advantages and disadvantages for practi- cal application, and then detailed analysis and discussion focus on a kind of new method which is called "transfer element method" (TEM) with emphasis on its application in the following three problems: turbomachinery noise generations, sound transmission in ducts and radiation from the inlet and outlet of ducts, as well as the interaction between them. In the theoretical frame of the TEM, the solution of acoustic field in an infinite duct with stator sound source or liner is extended to that in a finite domain with all knows and unknowns on the interface plane, and the relevant acoustic field is solved by setting up matching equation. In addition, based on combining the TEM with the boundary element method (BEM) by establishing the pressure and its derivative con- tinuum conditions on the inlet and outlet surface, the sound radiation from the inlet and outlet of ducts can also be investigated. Finally, the effects of various interactions between the sound source and acoustic treatment have been discussed in this survey. The numerical examples indicate that it is quite important to consider the effect of such interactions on sound attenuation during the acoustic design of aeroengine nacelle.