Recently,MnO2 has gained attention as an electrode material because of its very high theoretical capacity and abundant availability.However,the very high volumetric change caused by its conversion-type reaction result...Recently,MnO2 has gained attention as an electrode material because of its very high theoretical capacity and abundant availability.However,the very high volumetric change caused by its conversion-type reaction results in bad reversibility of charge-discharge.In this study,δ-MnO2 of thickness 8 nm anchored on the surface of carbon nanotubes(CNT)by Mn-O-C chemical bonding is synthesized via a facile hydrothermal method.Numerous ex-situ characterizations of the lithium storage process were performed.Furthermore,density functional theory(DFT)calculations indicated thatδ-MnO2(012)thermodynamically prefers bonding with CNTs.Moreover,the interfacial interaction reinforces the connection of Mn-O and reduces the bond strength of Li-O in lithiated MnO2,which could facilitate an intercalation-type lithium storage reaction.Consequently,the as-synthesizedδ-MnO2 retains an excellent reversible capacity of 577.5 mAh g-1 in 1000 cycles at a high rate of 2 A g-1 between 0.1 V and 3.0 V.The results of this study demonstrate the possibility of employing the cost-effective transition metal oxides as intercalation lithium storage dominant electrodes for advanced rechargeable batteries.展开更多
Rechargeable aluminum ion battery(AIB) with high theoretical specific capacity, abundant elements and low cost engages considerable attention as a promising next generation energy storage and conversion system. Nevert...Rechargeable aluminum ion battery(AIB) with high theoretical specific capacity, abundant elements and low cost engages considerable attention as a promising next generation energy storage and conversion system. Nevertheless, to date, one of the major barriers to pursuit better AIB is the limited applicable cathode materials with the ability to store aluminum highly reversibly. Herein, a highly reversible AIB is proposed using mesoporous TiO2 microparticles(M-TiO2) as the cathode material. The improved performance of Ti O2/Al battery is ascribed to the high ionic conductivity and material stability, which is caused by the stable architecture with a mesoporous microstructure and no random aggregation of secondary particles. In addition, we conducted detailed characterization to gain deeper understanding of the Al^(3+) storage mechanism in anatase Ti O2 for AIB. Our findings demonstrate clearly that Al^(3+)can be reversibly stored in anatase TiO2 by intercalation reactions based on ionic liquid electrolyte. Especially, DFT calculations were used to investigate the accurate insertion sites of aluminum ions in M-Ti O2 and the volume changes of M-TiO2 cells during discharging. As for the controversial side reactions in AIBs, in this work, by normalized calculation, we confirm that M-Ti O2 alone participate in the redox reaction. Moreover, cyclic voltammetry(CV) test was performed to investigate the pseudocapacitive behavior.展开更多
WS2 exhibits tremendous potentials for Na-ions storage owing to high capacity(433 mAh g^(-1)). Nevertheless, WS2 layered structure is often exfoliated with rapid capacity decay and sluggish reaction kinetics.In this w...WS2 exhibits tremendous potentials for Na-ions storage owing to high capacity(433 mAh g^(-1)). Nevertheless, WS2 layered structure is often exfoliated with rapid capacity decay and sluggish reaction kinetics.In this work, WS2 nanosheets with different crystallinities are controlled by different synthesis methods.The high crystallinity WS2 exhibits high degree of interlayer order and strong interlayer force. It exhibits superior electrochemical properties, at the current density of 200 mA g^(-1) after 300 cycles with reversible capacity of 471 mAh g^(-1). Even at 5.0 A g^(-1), the capacities can still arrive at 240 mAh g^(-1) after 250 cycles, exhibiting stable cycling performance. Further electrochemical research finds that the high degree of interlayer order of layered WS2 structure can perform highly conducive Na+insertion/extraction with greatly improved contribution of intercalation capacity. Moreover, the strong interlayer force can effectively restrain the exfoliating of the WS2 nanosheets, guaranteeing the stability of the structure. Combining the above result reveals that controlling the order and force of the interlayer is an effective way to enhance the electrochemical properties of WS2 as SIBs anode materials. This work can provide new insight for inhibiting the exfoliation of layered compounds to pursue excellent electrochemical performance in Na-ion storage systems.展开更多
The ZrO2/TiO2 pillared laponite (Ti-Zr-lap) photocatalysts were prepared with intercalation reaction by supercritical fluid drying (SCFD),and characterized by XRD,TEM,SEM and BET surface area analysis,and the phot...The ZrO2/TiO2 pillared laponite (Ti-Zr-lap) photocatalysts were prepared with intercalation reaction by supercritical fluid drying (SCFD),and characterized by XRD,TEM,SEM and BET surface area analysis,and the photocatalytic properties of Ti-Zr-lap were investigated by degradation of azo dye acid red B (ARB).The results showed that the ZrO2/TiO2 pillared structures in laponite could be formed,with the mass fraction of (Zr4++Ti4+)/laponite (Xm) increasing,the basal spacing and the BET surface area of Ti-Zr-lap significantly increased.The Ti-Zr-lap used as photocatalyst had the advantages of stable and porous layered structure,large surface area with the anatase type TiO2.Compared with the Ti-Zr-lap dried by air drying,the Ti-Zr-lap dried by SCFD showed better photocatalytic property which was very close to that of P25 TiO2.Using the Ti-Zr-lap as photocatalyst with the optimum Xm of 0.16 and the calcination temperature of 500 ℃,under the conditions of the initial concentration of ARB 20 mg/L,photocatalyst concentration of 1.5 g/L and irradiation time 60 min,the decoloring rate of ARB could achieve 98.3%,indicating that the Ti-Zr-lap had excellent photocatalytic property.展开更多
Aqueous zinc-ion batteries have broad application prospects due to the eco-friendliness,cost-economy and high safety.However,the scarcity of high-performance cathodes with outstanding rate capability and long lifespan...Aqueous zinc-ion batteries have broad application prospects due to the eco-friendliness,cost-economy and high safety.However,the scarcity of high-performance cathodes with outstanding rate capability and long lifespan has affected their development.Herein,we report a metallic vanadium trioxide material intercalated with phase transformation as cathode applied in aqueous zinc-ion batteries.It offers satisfactory electrochemical performances with a high specific capacity(435 mAh g^(-1) at 0.5 A g^(-1)),decent power density(5.23 kW kg^(-1))and desired energy density(331 Wh kg^(-1)),as well as good cyclability.The superior performance originates from the stable structure and fast Zn^(2+)diffusion,enabled by the pre-intercalation of Zn^(2+)and water molecules.展开更多
The laponite pillared by the CeO2 modified TiO2 (Ce-Ti-lap) were prepared by microwave intercalation reaction with laponite as the layered clay, tetrabutyl titanate and cerium chloride as the Ce-Ti composite pillaring...The laponite pillared by the CeO2 modified TiO2 (Ce-Ti-lap) were prepared by microwave intercalation reaction with laponite as the layered clay, tetrabutyl titanate and cerium chloride as the Ce-Ti composite pillaring agent, and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Brumauer-Emmett-Teller (BET) surface area. The photocatalytic activities of Ce-Ti-lap were investigated by the degradation of methyl orange (MO). The results showed that Ce and Ti could be introduced to...展开更多
Rechargeable ion batteries are one of the most reliable energy storage technologies for the applications ranging from small portable devices and electric vehicles to renewable energy integration and large-scale statio...Rechargeable ion batteries are one of the most reliable energy storage technologies for the applications ranging from small portable devices and electric vehicles to renewable energy integration and large-scale stationary energy storage.In the roadmap of developing and understanding new electrode materials for rechargeable ion batteries,oxygen vacancies,known as defects in metal oxides,have shown a high impact on the final electrochemical performance of the oxides.The present review aims to summarise the synthesis methods and characterisation techniques of oxygen vacancies as well as some of the most recent and exciting progress made to understand the role of oxygen vacancies in the electrochemical performance of Li-,Na-,K-and Zn-ion batteries.This review discusses not only the role of oxygen vacancies directly in electrode materials and indirectly in the coating layers on electrode materials,but also the synergistic role of oxygen vacancies interplaying with other contributors such as carbonaceous materials,doping,amorphisation,structural transformation,nanostructuring and functional coating.Finally,perspectives are given to stimulate new ideas and open questions to facilitate the further development of oxygen deficient electrode materials in energy research landscape.展开更多
基金financially supported by the National Key Research and Development Program of China(Grant No.2018YFB0104302)the National Natural Science Foundation of China(Grant No.51872026)。
文摘Recently,MnO2 has gained attention as an electrode material because of its very high theoretical capacity and abundant availability.However,the very high volumetric change caused by its conversion-type reaction results in bad reversibility of charge-discharge.In this study,δ-MnO2 of thickness 8 nm anchored on the surface of carbon nanotubes(CNT)by Mn-O-C chemical bonding is synthesized via a facile hydrothermal method.Numerous ex-situ characterizations of the lithium storage process were performed.Furthermore,density functional theory(DFT)calculations indicated thatδ-MnO2(012)thermodynamically prefers bonding with CNTs.Moreover,the interfacial interaction reinforces the connection of Mn-O and reduces the bond strength of Li-O in lithiated MnO2,which could facilitate an intercalation-type lithium storage reaction.Consequently,the as-synthesizedδ-MnO2 retains an excellent reversible capacity of 577.5 mAh g-1 in 1000 cycles at a high rate of 2 A g-1 between 0.1 V and 3.0 V.The results of this study demonstrate the possibility of employing the cost-effective transition metal oxides as intercalation lithium storage dominant electrodes for advanced rechargeable batteries.
基金supported by the National Basic Research Program of China (Grant No. 2015CB251100)the Shell Global Solutions International B.V. (Agreement No. PT76419)。
文摘Rechargeable aluminum ion battery(AIB) with high theoretical specific capacity, abundant elements and low cost engages considerable attention as a promising next generation energy storage and conversion system. Nevertheless, to date, one of the major barriers to pursuit better AIB is the limited applicable cathode materials with the ability to store aluminum highly reversibly. Herein, a highly reversible AIB is proposed using mesoporous TiO2 microparticles(M-TiO2) as the cathode material. The improved performance of Ti O2/Al battery is ascribed to the high ionic conductivity and material stability, which is caused by the stable architecture with a mesoporous microstructure and no random aggregation of secondary particles. In addition, we conducted detailed characterization to gain deeper understanding of the Al^(3+) storage mechanism in anatase Ti O2 for AIB. Our findings demonstrate clearly that Al^(3+)can be reversibly stored in anatase TiO2 by intercalation reactions based on ionic liquid electrolyte. Especially, DFT calculations were used to investigate the accurate insertion sites of aluminum ions in M-Ti O2 and the volume changes of M-TiO2 cells during discharging. As for the controversial side reactions in AIBs, in this work, by normalized calculation, we confirm that M-Ti O2 alone participate in the redox reaction. Moreover, cyclic voltammetry(CV) test was performed to investigate the pseudocapacitive behavior.
基金supported by the National Natural Science Foundation of China (Nos. 21701107, 51672165, and 51472152)the China Postdoctoral Science Foundation (No. 2016M592897XB)+3 种基金Technology and Natural Science Foundation of Shaanxi (No. 2018JQ5107)Key Program for International S&T Cooperation Projects of Shaanxi ProvinceXi’an Key Laboratory of green manufacture of ceramic materials Foundation No. 2019220214SYS017CG039China Graduate Innovation Fund of Shaanxi University of Science and Technology。
文摘WS2 exhibits tremendous potentials for Na-ions storage owing to high capacity(433 mAh g^(-1)). Nevertheless, WS2 layered structure is often exfoliated with rapid capacity decay and sluggish reaction kinetics.In this work, WS2 nanosheets with different crystallinities are controlled by different synthesis methods.The high crystallinity WS2 exhibits high degree of interlayer order and strong interlayer force. It exhibits superior electrochemical properties, at the current density of 200 mA g^(-1) after 300 cycles with reversible capacity of 471 mAh g^(-1). Even at 5.0 A g^(-1), the capacities can still arrive at 240 mAh g^(-1) after 250 cycles, exhibiting stable cycling performance. Further electrochemical research finds that the high degree of interlayer order of layered WS2 structure can perform highly conducive Na+insertion/extraction with greatly improved contribution of intercalation capacity. Moreover, the strong interlayer force can effectively restrain the exfoliating of the WS2 nanosheets, guaranteeing the stability of the structure. Combining the above result reveals that controlling the order and force of the interlayer is an effective way to enhance the electrochemical properties of WS2 as SIBs anode materials. This work can provide new insight for inhibiting the exfoliation of layered compounds to pursue excellent electrochemical performance in Na-ion storage systems.
基金Funded by China Postdoctoral Science Foundation (No.20090450868)
文摘The ZrO2/TiO2 pillared laponite (Ti-Zr-lap) photocatalysts were prepared with intercalation reaction by supercritical fluid drying (SCFD),and characterized by XRD,TEM,SEM and BET surface area analysis,and the photocatalytic properties of Ti-Zr-lap were investigated by degradation of azo dye acid red B (ARB).The results showed that the ZrO2/TiO2 pillared structures in laponite could be formed,with the mass fraction of (Zr4++Ti4+)/laponite (Xm) increasing,the basal spacing and the BET surface area of Ti-Zr-lap significantly increased.The Ti-Zr-lap used as photocatalyst had the advantages of stable and porous layered structure,large surface area with the anatase type TiO2.Compared with the Ti-Zr-lap dried by air drying,the Ti-Zr-lap dried by SCFD showed better photocatalytic property which was very close to that of P25 TiO2.Using the Ti-Zr-lap as photocatalyst with the optimum Xm of 0.16 and the calcination temperature of 500 ℃,under the conditions of the initial concentration of ARB 20 mg/L,photocatalyst concentration of 1.5 g/L and irradiation time 60 min,the decoloring rate of ARB could achieve 98.3%,indicating that the Ti-Zr-lap had excellent photocatalytic property.
基金financially supported by the National Natural Science Foundation of China(51872139,51902158,and 51903121)the Recruitment Program of Global Experts(1211019)+2 种基金the“Six Talent Peak”Project of Jiangsu Province(XCL-043,XCL-021 and XCL-018)the Natural Science Foundation of Jiangsu Higher Education Institutions(19KJB430002 and 18KJB150016)the start-up fund from Nanjing Tech University(3983500197 and 3827401784)。
文摘Aqueous zinc-ion batteries have broad application prospects due to the eco-friendliness,cost-economy and high safety.However,the scarcity of high-performance cathodes with outstanding rate capability and long lifespan has affected their development.Herein,we report a metallic vanadium trioxide material intercalated with phase transformation as cathode applied in aqueous zinc-ion batteries.It offers satisfactory electrochemical performances with a high specific capacity(435 mAh g^(-1) at 0.5 A g^(-1)),decent power density(5.23 kW kg^(-1))and desired energy density(331 Wh kg^(-1)),as well as good cyclability.The superior performance originates from the stable structure and fast Zn^(2+)diffusion,enabled by the pre-intercalation of Zn^(2+)and water molecules.
基金Project supported by China Postdoctoral Science Foundation (20090450868)
文摘The laponite pillared by the CeO2 modified TiO2 (Ce-Ti-lap) were prepared by microwave intercalation reaction with laponite as the layered clay, tetrabutyl titanate and cerium chloride as the Ce-Ti composite pillaring agent, and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Brumauer-Emmett-Teller (BET) surface area. The photocatalytic activities of Ce-Ti-lap were investigated by the degradation of methyl orange (MO). The results showed that Ce and Ti could be introduced to...
基金support by the Engineering and Physical Sciences Research Council(EP/V000152/1)。
文摘Rechargeable ion batteries are one of the most reliable energy storage technologies for the applications ranging from small portable devices and electric vehicles to renewable energy integration and large-scale stationary energy storage.In the roadmap of developing and understanding new electrode materials for rechargeable ion batteries,oxygen vacancies,known as defects in metal oxides,have shown a high impact on the final electrochemical performance of the oxides.The present review aims to summarise the synthesis methods and characterisation techniques of oxygen vacancies as well as some of the most recent and exciting progress made to understand the role of oxygen vacancies in the electrochemical performance of Li-,Na-,K-and Zn-ion batteries.This review discusses not only the role of oxygen vacancies directly in electrode materials and indirectly in the coating layers on electrode materials,but also the synergistic role of oxygen vacancies interplaying with other contributors such as carbonaceous materials,doping,amorphisation,structural transformation,nanostructuring and functional coating.Finally,perspectives are given to stimulate new ideas and open questions to facilitate the further development of oxygen deficient electrode materials in energy research landscape.