This paper makes researches on multiple independently reentry vehicle (MIRV) ballistic missile interception. It breaks through traditional intercepting methods of missiles and combines comba- ting time characteristi...This paper makes researches on multiple independently reentry vehicle (MIRV) ballistic missile interception. It breaks through traditional intercepting methods of missiles and combines comba- ting time characteristics of MIRV missiles with the principle of computer process schedule. In this paper, a way of firstly intercepting the target missile with higher threaten grade is proposed. This method determines the threaten grade of the attacking target according to computer process schedu- ling algorithms, then appljed a proportional navigation guidance law to intercept target missiles in priority so that it achieves the effect of less damage. The simulation results indicate that it is effective to use the proportional navigation guidance law based on the process scheduling to intercept target missile. It possesses referential value in modem weapon combats.展开更多
This paper describes the preliminary study results of developing a hypervelocity terminal intercept guidance system of a multiple kinetic-energy impactor vehicle(MKIV).The proposed MKIV system is intended to fragment ...This paper describes the preliminary study results of developing a hypervelocity terminal intercept guidance system of a multiple kinetic-energy impactor vehicle(MKIV).The proposed MKIV system is intended to fragment or pulverize an asteroid of smaller than approximately 150 m in diameter that is detected with a mission lead time of shorter than 10 years,without using nuclear explosive devices.This paper focuses on the development of a new image processing algorithm based on Otsu’s method for the coordinated terminal intercept guidance and control of multiple kinetic-energy impactors employing visual and/or infrared sensors.A scaled polyhedron shape model of asteroid(216)Kleopatra is used as a fictional target asteroid.GPU-based simulation results demonstrate the feasibility of impacting a small irregular-shaped asteroid by using the proposed new image processing algorithm and a classical pulsed TPN(true proportional navigation)terminal guidance law.展开更多
This paper presents an overview of space mission concepts for disrupting or pulverizing hazardous asteroids, especially with warning time shorter than approximately 10 years. An innovative mission concept, referred to...This paper presents an overview of space mission concepts for disrupting or pulverizing hazardous asteroids, especially with warning time shorter than approximately 10 years. An innovative mission concept, referred to as a nuclear hypervelocity asteroid intercept vehicle (HAIV) system, employs both a kinetic-energy impactor and nuclear explosive devices. A new mission concept of exploiting a multiple kinetic-energy impactor vehicle (MKIV) system that doesn’t employ nuclear explosives is proposed in this paper, especially for asteroids smaller than approximately 150 m in diameter. The multiple shock wave interaction effect on disrupting or pulverizing a small asteroid is discussed using hydrodynamic simulation results. A multi-target terminal guidance problem and a planetary defense mission design employing a heavy-lift launch vehicle are also brie y discussed in support of the new non-nuclear MKIV mission concept. The nuclear HAIV and non-nuclear MKIV systems complement to each other to effectively mitigate the various asteroid impact threats with short warning time.展开更多
In order to intercept the future targets that are characterized by high maneuverability, multiple interceptors may be launched and aimed at single target. The scenario of two missiles P and Q intercepting a single tar...In order to intercept the future targets that are characterized by high maneuverability, multiple interceptors may be launched and aimed at single target. The scenario of two missiles P and Q intercepting a single target is modeled as a two-pursuit single-evader non-zero-sum linear quadratic differential game. The intercept space is decomposed into three subspaces which are mutually disjoint and their union covers the entire intercept space. The effect of adding the second interceptor arises in the intercept space of both P and Q (PQ-intercept space). A guidance law is derived from the Nash equilibrium strategy set (NESS) of the game. Simulation studies are focused on the PQ-intercept space. It is indicated that 1) increasing the target's maneuverability will enlarge PQ-intercept space; 2) the handover conditions will be released if the initial zero-effort-miss (ZEM) of both interceptors has opposite sign; 3) overvaluation of the target's maneuverability by choosing a small weight coefficient will generate robust performance with respect to the target maneuvering command switch time and decrease the fuel requirement; and 4) cooperation between interceptors increases the interception probability.展开更多
文摘This paper makes researches on multiple independently reentry vehicle (MIRV) ballistic missile interception. It breaks through traditional intercepting methods of missiles and combines comba- ting time characteristics of MIRV missiles with the principle of computer process schedule. In this paper, a way of firstly intercepting the target missile with higher threaten grade is proposed. This method determines the threaten grade of the attacking target according to computer process schedu- ling algorithms, then appljed a proportional navigation guidance law to intercept target missiles in priority so that it achieves the effect of less damage. The simulation results indicate that it is effective to use the proportional navigation guidance law based on the process scheduling to intercept target missile. It possesses referential value in modem weapon combats.
文摘This paper describes the preliminary study results of developing a hypervelocity terminal intercept guidance system of a multiple kinetic-energy impactor vehicle(MKIV).The proposed MKIV system is intended to fragment or pulverize an asteroid of smaller than approximately 150 m in diameter that is detected with a mission lead time of shorter than 10 years,without using nuclear explosive devices.This paper focuses on the development of a new image processing algorithm based on Otsu’s method for the coordinated terminal intercept guidance and control of multiple kinetic-energy impactors employing visual and/or infrared sensors.A scaled polyhedron shape model of asteroid(216)Kleopatra is used as a fictional target asteroid.GPU-based simulation results demonstrate the feasibility of impacting a small irregular-shaped asteroid by using the proposed new image processing algorithm and a classical pulsed TPN(true proportional navigation)terminal guidance law.
文摘This paper presents an overview of space mission concepts for disrupting or pulverizing hazardous asteroids, especially with warning time shorter than approximately 10 years. An innovative mission concept, referred to as a nuclear hypervelocity asteroid intercept vehicle (HAIV) system, employs both a kinetic-energy impactor and nuclear explosive devices. A new mission concept of exploiting a multiple kinetic-energy impactor vehicle (MKIV) system that doesn’t employ nuclear explosives is proposed in this paper, especially for asteroids smaller than approximately 150 m in diameter. The multiple shock wave interaction effect on disrupting or pulverizing a small asteroid is discussed using hydrodynamic simulation results. A multi-target terminal guidance problem and a planetary defense mission design employing a heavy-lift launch vehicle are also brie y discussed in support of the new non-nuclear MKIV mission concept. The nuclear HAIV and non-nuclear MKIV systems complement to each other to effectively mitigate the various asteroid impact threats with short warning time.
文摘In order to intercept the future targets that are characterized by high maneuverability, multiple interceptors may be launched and aimed at single target. The scenario of two missiles P and Q intercepting a single target is modeled as a two-pursuit single-evader non-zero-sum linear quadratic differential game. The intercept space is decomposed into three subspaces which are mutually disjoint and their union covers the entire intercept space. The effect of adding the second interceptor arises in the intercept space of both P and Q (PQ-intercept space). A guidance law is derived from the Nash equilibrium strategy set (NESS) of the game. Simulation studies are focused on the PQ-intercept space. It is indicated that 1) increasing the target's maneuverability will enlarge PQ-intercept space; 2) the handover conditions will be released if the initial zero-effort-miss (ZEM) of both interceptors has opposite sign; 3) overvaluation of the target's maneuverability by choosing a small weight coefficient will generate robust performance with respect to the target maneuvering command switch time and decrease the fuel requirement; and 4) cooperation between interceptors increases the interception probability.