The paper addresses the decentralized optimal control and stabilization problems for interconnected systems subject to asymmetric information.Compared with previous work,a closed-loop optimal solution to the control p...The paper addresses the decentralized optimal control and stabilization problems for interconnected systems subject to asymmetric information.Compared with previous work,a closed-loop optimal solution to the control problem and sufficient and necessary conditions for the stabilization problem of the interconnected systems are given for the first time.The main challenge lies in three aspects:Firstly,the asymmetric information results in coupling between control and estimation and failure of the separation principle.Secondly,two extra unknown variables are generated by asymmetric information(different information filtration)when solving forward-backward stochastic difference equations.Thirdly,the existence of additive noise makes the study of mean-square boundedness an obstacle.The adopted technique is proving and assuming the linear form of controllers and establishing the equivalence between the two systems with and without additive noise.A dual-motor parallel drive system is presented to demonstrate the validity of the proposed algorithm.展开更多
This paper presents an analysis of the power flow within the Northern Interconnected Grid of Cameroon. The Newton-Raphson method has been performed, known for its accuracy, under MATLAB software, to model and solve co...This paper presents an analysis of the power flow within the Northern Interconnected Grid of Cameroon. The Newton-Raphson method has been performed, known for its accuracy, under MATLAB software, to model and solve complex power flow equations. This study simulates a series of outage scenarios to evaluate the responsiveness of the grid. The results obtained underline the crucial importance of reactive power management and highlight the urgent need to consolidate the grid infrastructure of North Cameroon. To increase grid resilience and stability, the paper recommends the strategic integration of renewables and the development of interconnections with other power grids. These measures are presented as viable solutions to meet current and future energy distribution challenges, ensuring a reliable and sustainable power supply for Cameroon.展开更多
The decentralized robust guaranteed cost control problem is studied for a class of interconnected singular large-scale systems with time-delay and norm-bounded time-invariant parameter uncertainty under a given quadra...The decentralized robust guaranteed cost control problem is studied for a class of interconnected singular large-scale systems with time-delay and norm-bounded time-invariant parameter uncertainty under a given quadratic cost performance function. The problem that is addressed in this study is to design a decentralized robust guaranteed cost state feedback controller such that the closed-loop system is not only regular, impulse-free and stable, but also guarantees an adequate level of performance for all admissible uncertainties. A sufficient condition for the existence of the decentralized robust guaranteed cost state feedback controllers is proposed in terms of a linear matrix inequality (LMI) via LMI approach. When this condition is feasible, the desired state feedback decentralized robust guaranteed cost controller gain matrices can be obtained. Finally, an illustrative example is provided to demonstrate the effectiveness of the proposed approach.展开更多
Lead sulfide quantum dots(PbS QDs) hold unique characteristics, including bandgap tunability, solutionprocessability etc., which make them highly applicable in tandem solar cells(TSCs). In all QD TSCs, its efficiency ...Lead sulfide quantum dots(PbS QDs) hold unique characteristics, including bandgap tunability, solutionprocessability etc., which make them highly applicable in tandem solar cells(TSCs). In all QD TSCs, its efficiency lags much behind to their single junction counterparts due to the deficient interconnection layer(ICL) and defective subcells. To improve TSCs performance, we developed three kinds of ICL structures based on 1.34 and 0.96 e V PbS QDs subcells. The control, 1,2-ethanedithiol capped PbS QDs(PbS-EDT)/Au/tin dioxide(SnO_(2))/zinc oxide(Zn O), utilized SnO_(2) layer to obtain high surface compactness.However, its energy level mismatch causes incomplete recombination. Bypassing it, the second ICL(PbS-EDT/Au/Zn O) removed SnO_(2) and boosted the power conversion efficiency(PCE) from 5.75% to 8.69%. In the third ICL(PbS-EDT/poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine](PTAA)/Au/Zn O), a thin layer of PTAA can effectively fill fissures on the surface of PbS-EDT and also protect the front cells from solvent penetration. This TSC obtained a PCE of 9.49% with an open circuit voltage of 0.91 V, a short circuit current density of 15.47 m A/cm~2, and a fill factor of 67.7%. To the best of our knowledge, this was the highest PCE achieved by all PbS QD TSCs reported to date. These TSCs maintained stable performance for a long working time under ambient conditions.展开更多
This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting eff...This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting efficiency. Firstly, to obtain the dimensionless governing equation of the system, the original bistable system is approximated as a system without viscoelastic term by using the stochastic averaging method of energy envelope, and then is further decoupled to derive an equivalent system. The credibility of the proposed method is validated by contrasting the consistency between the numerical and the analytical results of the equivalent system under different noise conditions. The influence of system parameters on average output power is analyzed, and the control effect of the time-delayed feedback control on system performance is compared. The output performance of the system is improved with the occurrence of stochastic resonance(SR). Therefore, the signal-to-noise ratio expression for measuring SR is derived, and the dependence of its SR behavior on different parameters is explored.展开更多
The performance of optical interconnection has improved dramatically in recent years.Silicon-based optoelectronic heterogeneous integration is the key enabler to achieve high performance optical interconnection,which ...The performance of optical interconnection has improved dramatically in recent years.Silicon-based optoelectronic heterogeneous integration is the key enabler to achieve high performance optical interconnection,which not only provides the optical gain which is absent from native Si substrates and enables complete photonic functionalities on chip,but also improves the system performance through advanced heterogeneous integrated packaging.This paper reviews recent progress of silicon-based optoelectronic heterogeneous integration in high performance optical interconnection.The research status,development trend and application of ultra-low loss optical waveguides,high-speed detectors,high-speed modulators,lasers and 2D,2.5D,3D and monolithic integration are focused on.展开更多
This paper focuses on a class of T-S fuzzy interconnected systems with time delays and time-varying parameter uncertainties. Observer-based output feedback decentralized controller is designed such that the closed-loo...This paper focuses on a class of T-S fuzzy interconnected systems with time delays and time-varying parameter uncertainties. Observer-based output feedback decentralized controller is designed such that the closed-loop interconnected system is asymptotically stable in the Lyapunov sense in probability for all admissible uncertainties and time delays. Sufficient conditions for robustly asymptotically stability of the systems are given in terms of a set of linear matrix inequalities (LMIs).展开更多
Distributed photovoltaic(PV)is one of the important power sources for building a new power system with new energy as the main body.The rapid development of distributed PV has brought new challenges to the operation of...Distributed photovoltaic(PV)is one of the important power sources for building a new power system with new energy as the main body.The rapid development of distributed PV has brought new challenges to the operation of distribution networks.In order to improve the absorption ability of large-scale distributed PV access to the distribution network,the AC/DC hybrid distribution network is constructed based on flexible interconnection technology,and a coordinated scheduling strategy model of hydrogen energy storage(HS)and distributed PV is established.Firstly,the mathematical model of distributed PV and HS system is established,and a comprehensive energy storage system combining seasonal hydrogen energy storage(SHS)and battery(BT)is proposed.Then,a flexible interconnected distribution network scheduling optimization model is established to minimize the total active power loss,voltage deviation and system operating cost.Finally,simulation analysis is carried out on the improved IEEE33 node,the NSGA-II algorithm is used to solve specific examples,and the optimal scheduling results of the comprehensive economy and power quality of the distribution network are obtained.Compared with the method that does not consider HS and flexible interconnection technology,the network loss and voltage deviation of this method are lower,and the total system cost can be reduced by 3.55%,which verifies the effectiveness of the proposed method.展开更多
In this article, we report the preparation of a three-dimensional(3D) interconnected mesoporous anatase TiO2-SiO2 nanocomposite. The nanocomposite was obtained by using an ordered two-dimensional(2D) hexagonal mes...In this article, we report the preparation of a three-dimensional(3D) interconnected mesoporous anatase TiO2-SiO2 nanocomposite. The nanocomposite was obtained by using an ordered two-dimensional(2D) hexagonal mesoporous anatase 70 TiO2-30 SiO2-950 nanocomposite(crystallized at 950 °C for 2 h) as a precursor, NaO H as an etchant of SiO2 via a "creating mesopores in the pore walls" approach. Our strategy adopts mild conditions of creating pores such as diluted NaO H solution, appropriate temperature and solid/liquid ratio, etc. aiming at ensuring the integrities of mesopores architecture and anatase nanocrystals. XRD, TEM and N2 sorption techniques have been used to systematically investigate the physico-chemical properties of the nanocomposites. The results show that the intrawall mesopores are highly dense and uniform(average pore size 3.6 nm), and highly link the initial mesochannels in a 3D manner while retaining mesostructural integrity. There is no significant change to either crystallinity or size of the anatase nanocrystals before and after creating the intrawall mesopores. The photocatalytic degradation rates of rhodamine B(RhB, 0.303 min^–1) and methylene blue(MB, 0.757 min^–1) dyes on the resultant nanocomposite are very high, which are 5.1 and 5.3 times that of the precursor; even up to 16.5 and 24.1 times that of Degussa P25 photocatalyst, respectively. These results clearly demonstrate that the 3D interconnected mesopores structure plays an overwhelming role to the increments of activities. The 3D mesoporous anatase TiO2-SiO2 nanocomposite exhibits unexpected-high degradation activities to RhB and MB in the mesoporous metal oxide-based materials reported so far. Additionally, the nanocomposite is considerably stable and reusable. We believe that this method would pave the way for the preparation of other 3D highly interconnected mesoporous metal oxide-based materials with ultra-high performance.展开更多
A new type controller, fuzzy neural networks sliding mode controller (FNNSMC), is developed for a class of large scale systems with unknown bounds of high order interconnections and disturbances. Although sliding mod...A new type controller, fuzzy neural networks sliding mode controller (FNNSMC), is developed for a class of large scale systems with unknown bounds of high order interconnections and disturbances. Although sliding mode control is simple and insensitive to uncertainties and disturbances, there are two main problems in the sliding mode controller (SMC): control input chattering and the assumption of known bounds of uncertainties and disturbances. The FNNSMC, which incorporates the fuzzy neural networks (FNN) and the SMC, can eliminate the chattering by using the continuous output of the FNN to replace the discontinuous sign term in the SMC. The bounds of uncertainties and disturbances are also not required in the FNNSMC design. The simulation results show that the FNNSMC has more robustness than the SMC.展开更多
The current investigations primarily focus on using advanced suspensions to overcome the tradeo design of ride comfort and handling performance for mining vehicles. It is generally realized by adjusting spring sti nes...The current investigations primarily focus on using advanced suspensions to overcome the tradeo design of ride comfort and handling performance for mining vehicles. It is generally realized by adjusting spring sti ness or damping parameters through active control methods. However, some drawbacks regarding control complexity and uncertain reliability are inevitable for these advanced suspensions. Herein, a novel passive hydraulically interconnected suspension(HIS) system is proposed to achieve an improved ride-handling compromise of mining vehicles. A lumped-mass vehicle model involved with a mechanical–hydraulic coupled system is developed by applying the free-body diagram method. The transfer matrix method is used to derive the impedance of the hydraulic system, and the impedance is integrated to form the equation of motions for a mechanical–hydraulic coupled system. The modal analysis method is employed to obtain the free vibration transmissibilities and force vibration responses under di erent road excitations. A series of frequency characteristic analyses are presented to evaluate the isolation vibration performance between the mining vehicles with the proposed HIS and the conventional suspension. The analysis results prove that the proposed HIS system can e ectively suppress the pitch motion of sprung mass to guarantee the handling performance, and favorably provide soft bounce sti ness to improve the ride comfort. The distribution of dynamic forces between the front and rear wheels is more reasonable, and the vibration decay rate of sprung mass is increased e ectively. This research proposes a new suspension design method that can achieve the enhanced cooperative control of bounce and pitch motion modes to improve the ride comfort and handling performance of mining vehicles as an e ective passive suspension system.展开更多
This article considers delay dependent decentralized H∞ filtering for a class of uncertain interconnected systems, where the uncertainties are assumed to be time varying and satisfy the norm-bounded conditions. First...This article considers delay dependent decentralized H∞ filtering for a class of uncertain interconnected systems, where the uncertainties are assumed to be time varying and satisfy the norm-bounded conditions. First, combining the Lyapunov-Krasovskii functional approach and the delay integral inequality of matrices, a sufficient condition of the existence of the robust decentralized H∞ filter is derived, which makes the error systems asymptotically stable and satisfies the H∞ norm of the transfer function from noise input to error output less than the specified up-bound on the basis of the form of uncertainties. Then, the above sufficient condition is transformed to a system of easily solvable LMIs via a series of equivalent transformation. Finally, the numerical simulation shows the efficiency of the main results.展开更多
The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator cont...The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator control scheme. To this end, we consider a nonlinear interconnected model for multiarea power systems which also include uncertainties and timevarying communication delays. The design procedure is formulated using semi-definite programming and linear matrix inequality(LMI) method. The solution of the proposed LMIs returns necessary parameters for the tracking controllers such that the impact of model uncertainty and load disturbances are minimized. The proposed controllers are capable of receiving all or part of subsystems information, whereas the outputs of each controller are local. These controllers are designed such that the resilient stability of the overall closed-loop system is guaranteed. Simulation results are provided to verify the effectiveness of the proposed scheme. Simulation results quantify that the distributed(and decentralized) controlled system behaves well in presence of large parameter perturbations and random disturbances on the power system.展开更多
This paper deals with analysis and synthesis problems of spatially interconnected systems where communicated information may get lost between subsystems. Spatial shift operator and temporal forward shift operator are ...This paper deals with analysis and synthesis problems of spatially interconnected systems where communicated information may get lost between subsystems. Spatial shift operator and temporal forward shift operator are introduced to model the interconnected systems as discrete time-space multidimensional linear systems with Markovian jumping parameters which reflect the state of communication channels. To ensure the whole system's well-posedness and mean square stability for a given packet loss rate, a condition is derived through analysis. Then a procedure of designing distributed dynamic output feedback controllers is proposed. The controllers have the same structure as the plants and are solved within the linear matrix inequality (LMI) framework. Finally, we apply these results to study the effect of communication losses on the multiple vehicle platoon control system, which further illustrates the effectiveness of the proposed model and method.展开更多
Hierarchically interconnected porous activated carbon have high specific surface areas, large numbers of dye adsorption sites, and interconnected pores for dye molecule diffusion and transportation. We prepared hierar...Hierarchically interconnected porous activated carbon have high specific surface areas, large numbers of dye adsorption sites, and interconnected pores for dye molecule diffusion and transportation. We prepared hierarchically interconnected porous banana peel activated carbons(BPACs) via a green method involving hydrothermal pretreatment and KOH activation, and systematically tested its methylene blue(MB) adsorption capacity. SEM showed that the BPACs had an interconnected porous structure and high-porosity surface. The Brunauer-Emmett-Teller surface area was 601.21 m^2/g, the adsorption average pore diameter was 2.11 nm, and the total pore volume was 0.32 cm^3/g. The MB adsorption capacity increased with increasing temperature, initial MB concentration, and pH value; it decreased with increasing adsorbent dosage. The adsorption isotherms and kinetic results for MB adsorption on BPACs were best described by the Langmuir adsorption and pseudo-second-order kinetic models, respectively. BPACs have a well-developed hierarchically interconnected porous structure, which increase the MB adsorption capacity and removal efficiency. Systematic MB adsorption tests show that BPAC is a highly efficient and easily available adsorbent.展开更多
This paper is concerned with the decentralized stabilization of continuous and discrete linear interconnected systems with the structural constraints about the interconnection matrices. For the continuous case,the mai...This paper is concerned with the decentralized stabilization of continuous and discrete linear interconnected systems with the structural constraints about the interconnection matrices. For the continuous case,the main improvement in the paper as compared with the corresponding results in the literature is to extend the considered class of systems from S to S (both will be defined in the paper) without resulting in high decentralized gain and difficult numerical computation. The algorithm for obtaining decentralized state feedback control to stable the overall system is presented. The discrete case and some very useful results are discussed as well.展开更多
An advanced fuzzy C-mean (FCM) algorithm was proposed for the efficient regional clustering of multi-nodes interconnected systems. Due to various locational prices and regional coherencies for each node and point, m...An advanced fuzzy C-mean (FCM) algorithm was proposed for the efficient regional clustering of multi-nodes interconnected systems. Due to various locational prices and regional coherencies for each node and point, modified similarity measure was considered to gather nodes having similar characteristics. The similarity measure was needed to contain locafi0nal prices as well as regional coherency. In order to consider the two properties simultaneously, distance measure of fuzzy C-mean algorithm had to be modified. Regional clustering algorithm for interconnected power systems was designed based on the modified fuzzy C-mean algorithm. The proposed algorithm produces proper classification for the interconnected power system and the results are demonstrated in the example of IEEE 39-bus interconnected electricity system.展开更多
The Mekong supports one of the richest inland fisheries in the world, with many of the fish migrating long distance to spawn. Little is known about the fisheries and migration strategies of the Upper Mekong whilst it ...The Mekong supports one of the richest inland fisheries in the world, with many of the fish migrating long distance to spawn. Little is known about the fisheries and migration strategies of the Upper Mekong whilst it is supposed that many fish species move between the Lower and Upper Mekong. Most likely, natural fish migration in the river has been altered by dam construction across the mainstream of the Upper Mekong. In this paper, the interconnectivity of fish species between different sections of the Mekong and negative impacts of dams on migratory fish are studied. Of the 162 fish species in the Upper Mekong and the 869 species in the Lower Mekong, 61 species are common. Results show that there is no significant difference at order level between the UM and LM. Similarity coefficients are used to evaluate interconnectivity at species, genus and family levels among four different sections of the Upper Mekong with each other and with the Lower Mekong as a whole. The highest similarity is found between the middle and lower reach of the Upper Mekong at species and genus levels and the middle and upper reach at family level. Of the eight cascade dams, Mengsong Dam in planning is considered as the biggest threat to migratory fish from the Lower Mekong and should be particularly concerned.展开更多
This paper studies the problem of robust H∞ control design for a class of uncertain interconnected systems via state feedback. This class of systems are described by a state space model, which contains unknown nonlin...This paper studies the problem of robust H∞ control design for a class of uncertain interconnected systems via state feedback. This class of systems are described by a state space model, which contains unknown nonlinear interaction and time-varying norm-bounded parametric uncertainties in state equation. Using the Riccati-equation-based approach we design state feedback control laws, which guarantee the decentralized stability with disturbance attenuation for the interconnected uncertain systems. A simple example of an interconnected uncertain linear system is presented to illustrate the results.展开更多
As one of the low-cost energy storage systems,Na-ion batteries(NIBs)have received tremendous attention.However,the performance of current anode materials still cannot meet the requirements of NIBs.In our work,we obtai...As one of the low-cost energy storage systems,Na-ion batteries(NIBs)have received tremendous attention.However,the performance of current anode materials still cannot meet the requirements of NIBs.In our work,we obtain sulfur-doped interconnected carbon microspheres(S-CSs)via a simple hydrothermal method and subsequent sulfurizing treatment.Our S-CSs exhibit an ultrahigh reversible capacity of 520 mAh g^(-1) at 100 mA g^(-1) after 50 cycles and an excellent rate capability of 257 mAh g^(-1),even at a high current density of 2 A g^(-1).The density functional theory calculations demonstrate that sulfur doping in carbon favors the adsorption of Na atom during the sodiation process,which is accountable for the performance enhancement.Furthermore,we also utilize operando Raman spectroscopy to analyze the electrochemical reaction of our S-CSs,which further highlights the sulfur doping in improving Na-ion storage performance.展开更多
基金supported by the National Natural Science Foundation of China(62273213,62073199,62103241)Natural Science Foundation of Shandong Province for Innovation and Development Joint Funds(ZR2022LZH001)+4 种基金Natural Science Foundation of Shandong Province(ZR2020MF095,ZR2021QF107)Taishan Scholarship Construction Engineeringthe Original Exploratory Program Project of National Natural Science Foundation of China(62250056)Major Basic Research of Natural Science Foundation of Shandong Province(ZR2021ZD14)High-level Talent Team Project of Qingdao West Coast New Area(RCTD-JC-2019-05)。
文摘The paper addresses the decentralized optimal control and stabilization problems for interconnected systems subject to asymmetric information.Compared with previous work,a closed-loop optimal solution to the control problem and sufficient and necessary conditions for the stabilization problem of the interconnected systems are given for the first time.The main challenge lies in three aspects:Firstly,the asymmetric information results in coupling between control and estimation and failure of the separation principle.Secondly,two extra unknown variables are generated by asymmetric information(different information filtration)when solving forward-backward stochastic difference equations.Thirdly,the existence of additive noise makes the study of mean-square boundedness an obstacle.The adopted technique is proving and assuming the linear form of controllers and establishing the equivalence between the two systems with and without additive noise.A dual-motor parallel drive system is presented to demonstrate the validity of the proposed algorithm.
文摘This paper presents an analysis of the power flow within the Northern Interconnected Grid of Cameroon. The Newton-Raphson method has been performed, known for its accuracy, under MATLAB software, to model and solve complex power flow equations. This study simulates a series of outage scenarios to evaluate the responsiveness of the grid. The results obtained underline the crucial importance of reactive power management and highlight the urgent need to consolidate the grid infrastructure of North Cameroon. To increase grid resilience and stability, the paper recommends the strategic integration of renewables and the development of interconnections with other power grids. These measures are presented as viable solutions to meet current and future energy distribution challenges, ensuring a reliable and sustainable power supply for Cameroon.
基金This project was supported by the National Natural Science Foundation of China (60474078)Science Foundation of High Education of Jiangsu of China (04KJD120016).
文摘The decentralized robust guaranteed cost control problem is studied for a class of interconnected singular large-scale systems with time-delay and norm-bounded time-invariant parameter uncertainty under a given quadratic cost performance function. The problem that is addressed in this study is to design a decentralized robust guaranteed cost state feedback controller such that the closed-loop system is not only regular, impulse-free and stable, but also guarantees an adequate level of performance for all admissible uncertainties. A sufficient condition for the existence of the decentralized robust guaranteed cost state feedback controllers is proposed in terms of a linear matrix inequality (LMI) via LMI approach. When this condition is feasible, the desired state feedback decentralized robust guaranteed cost controller gain matrices can be obtained. Finally, an illustrative example is provided to demonstrate the effectiveness of the proposed approach.
基金National Natural Science Foundation of China (Grant No. 62374065)Interdisciplinary Research promotion of HUST (No. 2023JCYJ040)+2 种基金Innovation Project of Optics Valley Laboratory (No. OVL2021BG008)Program of Science Technology of Wenzhou City (No. G20210011)financial support from the Innovation and Technology Commission (Grant no. MHP/104/21)。
文摘Lead sulfide quantum dots(PbS QDs) hold unique characteristics, including bandgap tunability, solutionprocessability etc., which make them highly applicable in tandem solar cells(TSCs). In all QD TSCs, its efficiency lags much behind to their single junction counterparts due to the deficient interconnection layer(ICL) and defective subcells. To improve TSCs performance, we developed three kinds of ICL structures based on 1.34 and 0.96 e V PbS QDs subcells. The control, 1,2-ethanedithiol capped PbS QDs(PbS-EDT)/Au/tin dioxide(SnO_(2))/zinc oxide(Zn O), utilized SnO_(2) layer to obtain high surface compactness.However, its energy level mismatch causes incomplete recombination. Bypassing it, the second ICL(PbS-EDT/Au/Zn O) removed SnO_(2) and boosted the power conversion efficiency(PCE) from 5.75% to 8.69%. In the third ICL(PbS-EDT/poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine](PTAA)/Au/Zn O), a thin layer of PTAA can effectively fill fissures on the surface of PbS-EDT and also protect the front cells from solvent penetration. This TSC obtained a PCE of 9.49% with an open circuit voltage of 0.91 V, a short circuit current density of 15.47 m A/cm~2, and a fill factor of 67.7%. To the best of our knowledge, this was the highest PCE achieved by all PbS QD TSCs reported to date. These TSCs maintained stable performance for a long working time under ambient conditions.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11902081)the Science and Technology Projects of Guangzhou (Grant No. 202201010326)the Guangdong Provincial Basic and Applied Basic Research Foundation (Grant No. 2023A1515010833)。
文摘This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting efficiency. Firstly, to obtain the dimensionless governing equation of the system, the original bistable system is approximated as a system without viscoelastic term by using the stochastic averaging method of energy envelope, and then is further decoupled to derive an equivalent system. The credibility of the proposed method is validated by contrasting the consistency between the numerical and the analytical results of the equivalent system under different noise conditions. The influence of system parameters on average output power is analyzed, and the control effect of the time-delayed feedback control on system performance is compared. The output performance of the system is improved with the occurrence of stochastic resonance(SR). Therefore, the signal-to-noise ratio expression for measuring SR is derived, and the dependence of its SR behavior on different parameters is explored.
基金Project supported in part by the National Key Research and Development Program of China(Grant No.2021YFB2206504)the National Natural Science Foundation of China(Grant No.62235017)the China Postdoctoral Science Foundation(Grant No.2021M703125).
文摘The performance of optical interconnection has improved dramatically in recent years.Silicon-based optoelectronic heterogeneous integration is the key enabler to achieve high performance optical interconnection,which not only provides the optical gain which is absent from native Si substrates and enables complete photonic functionalities on chip,but also improves the system performance through advanced heterogeneous integrated packaging.This paper reviews recent progress of silicon-based optoelectronic heterogeneous integration in high performance optical interconnection.The research status,development trend and application of ultra-low loss optical waveguides,high-speed detectors,high-speed modulators,lasers and 2D,2.5D,3D and monolithic integration are focused on.
基金This work was supported by the National Nature Science Foundation of China (No. 60474038, No.70431002)the NSF for Distinguished Young Scholars of P. R.China (No. 60225013)
文摘This paper focuses on a class of T-S fuzzy interconnected systems with time delays and time-varying parameter uncertainties. Observer-based output feedback decentralized controller is designed such that the closed-loop interconnected system is asymptotically stable in the Lyapunov sense in probability for all admissible uncertainties and time delays. Sufficient conditions for robustly asymptotically stability of the systems are given in terms of a set of linear matrix inequalities (LMIs).
文摘Distributed photovoltaic(PV)is one of the important power sources for building a new power system with new energy as the main body.The rapid development of distributed PV has brought new challenges to the operation of distribution networks.In order to improve the absorption ability of large-scale distributed PV access to the distribution network,the AC/DC hybrid distribution network is constructed based on flexible interconnection technology,and a coordinated scheduling strategy model of hydrogen energy storage(HS)and distributed PV is established.Firstly,the mathematical model of distributed PV and HS system is established,and a comprehensive energy storage system combining seasonal hydrogen energy storage(SHS)and battery(BT)is proposed.Then,a flexible interconnected distribution network scheduling optimization model is established to minimize the total active power loss,voltage deviation and system operating cost.Finally,simulation analysis is carried out on the improved IEEE33 node,the NSGA-II algorithm is used to solve specific examples,and the optimal scheduling results of the comprehensive economy and power quality of the distribution network are obtained.Compared with the method that does not consider HS and flexible interconnection technology,the network loss and voltage deviation of this method are lower,and the total system cost can be reduced by 3.55%,which verifies the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(21373056)the Science and Technology Commission of Shanghai Municipality(13DZ2275200)~~
文摘In this article, we report the preparation of a three-dimensional(3D) interconnected mesoporous anatase TiO2-SiO2 nanocomposite. The nanocomposite was obtained by using an ordered two-dimensional(2D) hexagonal mesoporous anatase 70 TiO2-30 SiO2-950 nanocomposite(crystallized at 950 °C for 2 h) as a precursor, NaO H as an etchant of SiO2 via a "creating mesopores in the pore walls" approach. Our strategy adopts mild conditions of creating pores such as diluted NaO H solution, appropriate temperature and solid/liquid ratio, etc. aiming at ensuring the integrities of mesopores architecture and anatase nanocrystals. XRD, TEM and N2 sorption techniques have been used to systematically investigate the physico-chemical properties of the nanocomposites. The results show that the intrawall mesopores are highly dense and uniform(average pore size 3.6 nm), and highly link the initial mesochannels in a 3D manner while retaining mesostructural integrity. There is no significant change to either crystallinity or size of the anatase nanocrystals before and after creating the intrawall mesopores. The photocatalytic degradation rates of rhodamine B(RhB, 0.303 min^–1) and methylene blue(MB, 0.757 min^–1) dyes on the resultant nanocomposite are very high, which are 5.1 and 5.3 times that of the precursor; even up to 16.5 and 24.1 times that of Degussa P25 photocatalyst, respectively. These results clearly demonstrate that the 3D interconnected mesopores structure plays an overwhelming role to the increments of activities. The 3D mesoporous anatase TiO2-SiO2 nanocomposite exhibits unexpected-high degradation activities to RhB and MB in the mesoporous metal oxide-based materials reported so far. Additionally, the nanocomposite is considerably stable and reusable. We believe that this method would pave the way for the preparation of other 3D highly interconnected mesoporous metal oxide-based materials with ultra-high performance.
文摘A new type controller, fuzzy neural networks sliding mode controller (FNNSMC), is developed for a class of large scale systems with unknown bounds of high order interconnections and disturbances. Although sliding mode control is simple and insensitive to uncertainties and disturbances, there are two main problems in the sliding mode controller (SMC): control input chattering and the assumption of known bounds of uncertainties and disturbances. The FNNSMC, which incorporates the fuzzy neural networks (FNN) and the SMC, can eliminate the chattering by using the continuous output of the FNN to replace the discontinuous sign term in the SMC. The bounds of uncertainties and disturbances are also not required in the FNNSMC design. The simulation results show that the FNNSMC has more robustness than the SMC.
基金Supported by National Natural Science Foundation of China(Grant Nos.51805155,51675152)Foundation for Innovative Research Groups of National Natural Science Foundation of China(Grant No.51621004)Open Fund in the State Key Laboratory of Advanced Design and Manufacture for Vehicle Body(Grant No.71575005)
文摘The current investigations primarily focus on using advanced suspensions to overcome the tradeo design of ride comfort and handling performance for mining vehicles. It is generally realized by adjusting spring sti ness or damping parameters through active control methods. However, some drawbacks regarding control complexity and uncertain reliability are inevitable for these advanced suspensions. Herein, a novel passive hydraulically interconnected suspension(HIS) system is proposed to achieve an improved ride-handling compromise of mining vehicles. A lumped-mass vehicle model involved with a mechanical–hydraulic coupled system is developed by applying the free-body diagram method. The transfer matrix method is used to derive the impedance of the hydraulic system, and the impedance is integrated to form the equation of motions for a mechanical–hydraulic coupled system. The modal analysis method is employed to obtain the free vibration transmissibilities and force vibration responses under di erent road excitations. A series of frequency characteristic analyses are presented to evaluate the isolation vibration performance between the mining vehicles with the proposed HIS and the conventional suspension. The analysis results prove that the proposed HIS system can e ectively suppress the pitch motion of sprung mass to guarantee the handling performance, and favorably provide soft bounce sti ness to improve the ride comfort. The distribution of dynamic forces between the front and rear wheels is more reasonable, and the vibration decay rate of sprung mass is increased e ectively. This research proposes a new suspension design method that can achieve the enhanced cooperative control of bounce and pitch motion modes to improve the ride comfort and handling performance of mining vehicles as an e ective passive suspension system.
基金the National Natural Science Foundation of China (60634020)the Hunan Provincial Natural Science Foundation of China (07JJ6138)+1 种基金the Postdoctoral Science Foundation of China (20060390883)the China Ph.D. Discipline Special Foundation (20050533028).
文摘This article considers delay dependent decentralized H∞ filtering for a class of uncertain interconnected systems, where the uncertainties are assumed to be time varying and satisfy the norm-bounded conditions. First, combining the Lyapunov-Krasovskii functional approach and the delay integral inequality of matrices, a sufficient condition of the existence of the robust decentralized H∞ filter is derived, which makes the error systems asymptotically stable and satisfies the H∞ norm of the transfer function from noise input to error output less than the specified up-bound on the basis of the form of uncertainties. Then, the above sufficient condition is transformed to a system of easily solvable LMIs via a series of equivalent transformation. Finally, the numerical simulation shows the efficiency of the main results.
文摘The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator control scheme. To this end, we consider a nonlinear interconnected model for multiarea power systems which also include uncertainties and timevarying communication delays. The design procedure is formulated using semi-definite programming and linear matrix inequality(LMI) method. The solution of the proposed LMIs returns necessary parameters for the tracking controllers such that the impact of model uncertainty and load disturbances are minimized. The proposed controllers are capable of receiving all or part of subsystems information, whereas the outputs of each controller are local. These controllers are designed such that the resilient stability of the overall closed-loop system is guaranteed. Simulation results are provided to verify the effectiveness of the proposed scheme. Simulation results quantify that the distributed(and decentralized) controlled system behaves well in presence of large parameter perturbations and random disturbances on the power system.
文摘This paper deals with analysis and synthesis problems of spatially interconnected systems where communicated information may get lost between subsystems. Spatial shift operator and temporal forward shift operator are introduced to model the interconnected systems as discrete time-space multidimensional linear systems with Markovian jumping parameters which reflect the state of communication channels. To ensure the whole system's well-posedness and mean square stability for a given packet loss rate, a condition is derived through analysis. Then a procedure of designing distributed dynamic output feedback controllers is proposed. The controllers have the same structure as the plants and are solved within the linear matrix inequality (LMI) framework. Finally, we apply these results to study the effect of communication losses on the multiple vehicle platoon control system, which further illustrates the effectiveness of the proposed model and method.
基金Funded by the Project of Scientific Research Staring Foundation of Huaqiao University(11BS214)the Cultivate Project of National Natural Science Foundation of Huaqiao University(JBZR1214)the Educational research project for Young and middle-aged Teachers of Fujian Province(JAT160031)
文摘Hierarchically interconnected porous activated carbon have high specific surface areas, large numbers of dye adsorption sites, and interconnected pores for dye molecule diffusion and transportation. We prepared hierarchically interconnected porous banana peel activated carbons(BPACs) via a green method involving hydrothermal pretreatment and KOH activation, and systematically tested its methylene blue(MB) adsorption capacity. SEM showed that the BPACs had an interconnected porous structure and high-porosity surface. The Brunauer-Emmett-Teller surface area was 601.21 m^2/g, the adsorption average pore diameter was 2.11 nm, and the total pore volume was 0.32 cm^3/g. The MB adsorption capacity increased with increasing temperature, initial MB concentration, and pH value; it decreased with increasing adsorbent dosage. The adsorption isotherms and kinetic results for MB adsorption on BPACs were best described by the Langmuir adsorption and pseudo-second-order kinetic models, respectively. BPACs have a well-developed hierarchically interconnected porous structure, which increase the MB adsorption capacity and removal efficiency. Systematic MB adsorption tests show that BPAC is a highly efficient and easily available adsorbent.
基金National Natural Science Foundation of China(1 970 1 0 2 2 )
文摘This paper is concerned with the decentralized stabilization of continuous and discrete linear interconnected systems with the structural constraints about the interconnection matrices. For the continuous case,the main improvement in the paper as compared with the corresponding results in the literature is to extend the considered class of systems from S to S (both will be defined in the paper) without resulting in high decentralized gain and difficult numerical computation. The algorithm for obtaining decentralized state feedback control to stable the overall system is presented. The discrete case and some very useful results are discussed as well.
基金Work supported by the Second Stage of Brain Korea 21 ProjectsWork(2010-0020163) supported by Priority Research Centers Program through the National Research Foundation (NRF) funded by the Ministry of Education,Science and Technology of Korea
文摘An advanced fuzzy C-mean (FCM) algorithm was proposed for the efficient regional clustering of multi-nodes interconnected systems. Due to various locational prices and regional coherencies for each node and point, modified similarity measure was considered to gather nodes having similar characteristics. The similarity measure was needed to contain locafi0nal prices as well as regional coherency. In order to consider the two properties simultaneously, distance measure of fuzzy C-mean algorithm had to be modified. Regional clustering algorithm for interconnected power systems was designed based on the modified fuzzy C-mean algorithm. The proposed algorithm produces proper classification for the interconnected power system and the results are demonstrated in the example of IEEE 39-bus interconnected electricity system.
基金Supported by National Natural Science Foundation of China (No. 40601096)
文摘The Mekong supports one of the richest inland fisheries in the world, with many of the fish migrating long distance to spawn. Little is known about the fisheries and migration strategies of the Upper Mekong whilst it is supposed that many fish species move between the Lower and Upper Mekong. Most likely, natural fish migration in the river has been altered by dam construction across the mainstream of the Upper Mekong. In this paper, the interconnectivity of fish species between different sections of the Mekong and negative impacts of dams on migratory fish are studied. Of the 162 fish species in the Upper Mekong and the 869 species in the Lower Mekong, 61 species are common. Results show that there is no significant difference at order level between the UM and LM. Similarity coefficients are used to evaluate interconnectivity at species, genus and family levels among four different sections of the Upper Mekong with each other and with the Lower Mekong as a whole. The highest similarity is found between the middle and lower reach of the Upper Mekong at species and genus levels and the middle and upper reach at family level. Of the eight cascade dams, Mengsong Dam in planning is considered as the biggest threat to migratory fish from the Lower Mekong and should be particularly concerned.
文摘This paper studies the problem of robust H∞ control design for a class of uncertain interconnected systems via state feedback. This class of systems are described by a state space model, which contains unknown nonlinear interaction and time-varying norm-bounded parametric uncertainties in state equation. Using the Riccati-equation-based approach we design state feedback control laws, which guarantee the decentralized stability with disturbance attenuation for the interconnected uncertain systems. A simple example of an interconnected uncertain linear system is presented to illustrate the results.
基金Fundamental Research Funds for the Central Universities,Grant/Award Number:21617330National Natural Science Foundation of China,Grant/Award Numbers:21703081,51702056,51772135Ministry of Education of the People's Republic of China,Grant/Award Number:6141A02022516。
文摘As one of the low-cost energy storage systems,Na-ion batteries(NIBs)have received tremendous attention.However,the performance of current anode materials still cannot meet the requirements of NIBs.In our work,we obtain sulfur-doped interconnected carbon microspheres(S-CSs)via a simple hydrothermal method and subsequent sulfurizing treatment.Our S-CSs exhibit an ultrahigh reversible capacity of 520 mAh g^(-1) at 100 mA g^(-1) after 50 cycles and an excellent rate capability of 257 mAh g^(-1),even at a high current density of 2 A g^(-1).The density functional theory calculations demonstrate that sulfur doping in carbon favors the adsorption of Na atom during the sodiation process,which is accountable for the performance enhancement.Furthermore,we also utilize operando Raman spectroscopy to analyze the electrochemical reaction of our S-CSs,which further highlights the sulfur doping in improving Na-ion storage performance.