期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Basic Structure and Its Analysis of Nationwide Power System Interconnection
1
作者 Zeng Dewen 《Electricity》 2000年第3期11-17,共7页
关键词 WORK In Basic structure and Its Analysis of Nationwide Power System interconnection
下载PDF
ON DECENTRALIZED STABILIZATION OF LINEAR LARGE SCALE SYSTEMS WITH SYMMETRIC CIRCULANT STRUCTURE
2
作者 金朝永 张湘伟 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2004年第8期863-872,共10页
The decentralized stabilization of continuous and discrete linear large scale systems with symmetric circulant structure was studied.A few sufficient conditions on decentralized stabilization of such systems were prop... The decentralized stabilization of continuous and discrete linear large scale systems with symmetric circulant structure was studied.A few sufficient conditions on decentralized stabilization of such systems were proposed.For the continuous systems,by introducing a concept called the magnitude of interconnected structure,a very important property that the decentralized stabilization of such systems is fully determined by the structure of each isolated subsystem that is obtained when the magnitude of interconnected structure of the overall system is given.So the decentralized stabilization of such systems can be got by only appropriately designing or modifying the structure of each isolated subsystem,no matter how complicated the interconnected structure of the overall system is.A algorithm for obtaining decentralized state feedback to stabilize the overall system is given.The discrete systems were also discussed.The results show that there is a great dfference on decentralized stabilization between continuous case and discrete case. 展开更多
关键词 large scale system decentralized stabilization symmetric circulant structure magnitude of interconnected structure Ricatti equation
下载PDF
RECURSIVENESS OF ZERO STRUCTURES FOR SYSTEM MATRICES OF INTERCONNECTED LINEAR SYSTEMS VIA MODULE THEORETIC TOOLS
3
作者 M. De la Sen 《Analysis in Theory and Applications》 1997年第3期29-46,共18页
The importance of the zeros of multwariable linear systems is well-knoiun in terms of measure obstructions to the controllability and the. observability. In this paper, a recursive decarnposi Am oj interconnected syst... The importance of the zeros of multwariable linear systems is well-knoiun in terms of measure obstructions to the controllability and the. observability. In this paper, a recursive decarnposi Am oj interconnected systems is outlined by taking into account the sequential structure of the connnections. The paper extends the, coordinate, module-theoretic studies from the elementary algebraic systems theory to include the case oj such linear interconnected systems which need not to be controllable or observable. Also, the properties of controllability and observability, the decoupling zeros and the signal Making issues are characterized. 展开更多
关键词 maps RECURSIVENESS OF ZERO structureS FOR SYSTEM MATRICES OF INTERCONNECTED LINEAR SYSTEMS VIA MODULE THEORETIC TOOLS
下载PDF
Circumventing chemo-mechanical failure of Sn foil battery anode by grain refinement and elaborate porosity design
4
作者 Shuibin Tu Xin Ai +8 位作者 Xiancheng Wang Siwei Gui Zhao Cai Renming Zhan Yuchen Tan Weiwei Liu Hui Yang Chenhui Li Yongming Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期477-484,I0010,共9页
Tin (Sn) metal foil is a promising anode for next-generation high-energy–density lithium-ion batteries (LIBs) due to its high capacity and easy processibility. However, the pristine Sn foil anode suffers nonuniform a... Tin (Sn) metal foil is a promising anode for next-generation high-energy–density lithium-ion batteries (LIBs) due to its high capacity and easy processibility. However, the pristine Sn foil anode suffers nonuniform alloying/dealloying reaction with lithium (Li) and huge volume variation, leading to electrode pulverization and inferior electrochemical performance. Herein, we proposed that reduced grain size and elaborate porosity design of Sn foil can circumvent the nonuniform alloy reaction and buffer the volume change during the lithiation/delithiation cycling. Experimentally, we designed a three-dimensional interconnected porous Sn (3DIP-Sn) foil by a facile chemical alloying/dealloying approach, which showed improved electrochemical performance. The enhanced structure stability of the as-fabricated 3DIP-Sn foil was verified by chemo-mechanical simulations and experimental investigation. As expected, the 3DIP-Sn foil anode revealed a long cycle lifespan of 4400 h at 0.5 mA cm^(−2) and 1 mAh cm^(−2) in Sn||Li half cells. A 3DIP-Sn||LiFePO_(4) full cell with LiFePO_(4) loading of 7.1 mg cm^(−2) exhibited stable cycling for 500 cycles with 80% capacity retention at 70 mA g^(−1). Pairing with high-loading commercial LiNi0.6Co0.2Mn0.2O_(2) (NCM622, 18.4 mg cm^(−2)) cathode, a 3DIP-Sn||NCM622 full cell delivered a high reversible capacity of 3.2 mAh cm^(−2). These results demonstrated the important role of regulating the uniform alloying/dealloying reaction and circumventing the localized strain/stress in improving the electrochemical performance of Sn foil anodes for advanced LIBs. 展开更多
关键词 Sn foil anode 3D interconnected porous structure Grain refinement Uniform alloying/dealloying reaction Chemo-mechanical failure
下载PDF
Calculating the effective thermal conductivity of gray cast iron by using an interconnected graphite model
5
作者 Guang-hua Wang Yan-xiang Li 《China Foundry》 SCIE 2020年第3期183-189,共7页
A new theoretical model of gray cast iron taking into account a locally interconnected structure of flake graphite was designed,and the corresponding effective thermal conductivity was calculated using the thermal res... A new theoretical model of gray cast iron taking into account a locally interconnected structure of flake graphite was designed,and the corresponding effective thermal conductivity was calculated using the thermal resistance network method.The calculated results are obviously higher than that of the effective medium approximation assuming that graphite is distributed in isolation.It is suggested that the interconnected structure significantly enhances the overall thermal conductivity.Moreover,it is shown that high anisotropy of graphite thermal conductivity,high volume fraction of graphite,and small aspect ratio of flake graphite will cause the connectivity effects of graphite to more obviously improve the overall thermal conductivity.Higher graphite volume fraction,lower aspect ratio and higher matrix thermal conductivity are beneficial to obtain a high thermal conductivity gray cast iron.This work can provide guidance and reference for the development of high thermal conductivity gray cast iron and the design of high thermal conductivity composites with similar locally interconnected structures. 展开更多
关键词 gray cast iron effective thermal conductivity flake graphite interconnected graphite structure
下载PDF
Reinforced concrete-like Na_(3.5)V_(1.5)Mn_(0.5)(PO_(4))_(3)@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode
6
作者 Tao Long Peng Chen +11 位作者 Bin Feng Caili Yang Kairong Wang Yulei Wang Can Chen Yaping Wang Ruotong Li Meng Wu Minhuan Lan Wei Kong Pang Jian-Fang Wu Yuan-Li Ding 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第4期214-219,共6页
Realizing high-rate capability and high-efficiency utilization of polyanionic cathode materials is of great importance for practical sodium-ion batteries(SIBs) since they usually suffer from extremely low electronic c... Realizing high-rate capability and high-efficiency utilization of polyanionic cathode materials is of great importance for practical sodium-ion batteries(SIBs) since they usually suffer from extremely low electronic conductivity and limited ionic diffusion kinetics. Herein, taking Na_(3.5)V_(1.5)Mn_(0.5)(PO_(4))_(3)(NVMP) as an example, a reinforced concrete-like hierarchical and porous hybrid(NVMP@C@3DPG) built from 3D graphene(“rebar”) frameworks and in situ generated carbon coated NVMP(“concrete”) has been developed by a facile polymer assisted self-assembly and subsequent solid-state method. Such hybrids deliver superior rate capability(73.9 m Ah/g up to 20 C) and excellent cycling stability in a wide temperature range with a high specific capacity of 88.4 m Ah/g after 5000 cycles at 15 C at room temperature, and a high capacity retention of 97.1% after 500 cycles at 1 C(-20 ℃), and maintaining a high reversible capacity of 110.3 m Ah/g in full cell. This work offers a facile and efficient strategy to develop advanced polyanionic cathodes with high-efficiency utilization and 3D electron/ion transport systems. 展开更多
关键词 Sodium-ion battery Polyanionic cathode Hybrid structure Interconnected structure Energy storage
原文传递
Ectopic osteogenesis and angiogenesis regulated by porous architecture of hydroxyapatite scaffolds with similar interconnecting structure in vivo 被引量:16
7
作者 Jinyu Li Wei Zhi +5 位作者 Taotao Xu Feng Shi Ke Duan JianxinWang Yandong Mu Jie Weng 《Regenerative Biomaterials》 SCIE 2016年第5期285-297,共13页
The macro-pore sizes of porous scaffold play a key role for regulating ectopic osteogenesis and angiogenesis but many researches ignored the influence of interconnection between macro-pores with different sizes.In ord... The macro-pore sizes of porous scaffold play a key role for regulating ectopic osteogenesis and angiogenesis but many researches ignored the influence of interconnection between macro-pores with different sizes.In order to accurately reveal the relationship between ectopic osteogenesis and macro-pore sizes in dorsal muscle and abdominal cavities of dogs,hydroxyapatite(HA)scaffolds with three different macro-pore sizes of 500–650,750–900 and 1100–1250 mm were prepared via sugar spheres-leaching process,which also had similar interconnecting structure determined by keeping the d/s ratio of interconnecting window diameter to macro-pore size constant.The permeability test showed that the seepage flow of fluid through the porous scaffolds increased with the increase of macro-pore sizes.The cell growth in three scaffolds was not affected by the macro-pore sizes.The in vivo ectopic implantation results indicated that the macro-pore sizes of HA scaffolds with the similar interconnecting structure have impact not only the speed of osteogenesis and angiogenesis but also the space distribution of newly formed bone.The scaffold with macro-pore sizes of 750–900 mm exhibited much faster angiogenesis and osteogenesis,and much more uniformly distribution of new bone than those with othermacro-pore sizes.This work illustrates the importance of a suitable macro-pore sizes in HA scaffolds with the similar interconnecting structure which provides the environment for ectopic osteogenesis and angiogenesis. 展开更多
关键词 hydroxyapatite scaffolds similar interconnecting structure OSTEOGENESIS ANGIOGENESIS
原文传递
Three-dimensional-printed polycaprolactone scaffolds with interconnected hollow-pipe structures for enhanced bone regeneration
8
作者 Jiahua Duan Dong Lei +6 位作者 Chen Ling Yufeng Wang Zhicheng Cao Ming Zhang Huikang Zhang Zhengwei You Qingqiang Yao 《Regenerative Biomaterials》 SCIE EI 2022年第1期471-479,共9页
Three-dimensional(3D)-printed scaffolds are widely used in tissue engineering to help regenerate critical-sized bone defects.However,conventional scaffolds possess relatively simple porous structures that limit the de... Three-dimensional(3D)-printed scaffolds are widely used in tissue engineering to help regenerate critical-sized bone defects.However,conventional scaffolds possess relatively simple porous structures that limit the delivery of oxygen and nutrients to cells,leading to insufficient bone regeneration.Accordingly,in the present study,perfusable and permeable polycaprolactone scaffolds with highly interconnected hollow-pipe structures that mimic natural micro-vascular networks are prepared by an indirect onepot 3D-printing method.In vitro experiments demonstrate that hollow-pipe-structured(HPS)scaffolds promote cell attachment,proliferation,osteogenesis and angiogenesis compared to the normal non-hollow-pipe-structured scaffolds.Furthermore,in vivo studies reveal that HPS scaffolds enhance bone regeneration and vascularization in rabbit bone defects,as observed at 8 and 12weeks,respectively.Thus,the fabricated HPS scaffolds are promising candidates for the repair of critical-sized bone defects. 展开更多
关键词 three-dimensional printing interconnected hollow-pipe structure bone regeneration VASCULARIZATION POLYCAPROLACTONE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部