Maize(Zea mays L.)-soybean(Glycine max L.Merr.)relay intercropping provides a way to enhance land productivity.However,the late-planted soybean suffers from shading by the maize.After maize harvest,how the recovery gr...Maize(Zea mays L.)-soybean(Glycine max L.Merr.)relay intercropping provides a way to enhance land productivity.However,the late-planted soybean suffers from shading by the maize.After maize harvest,how the recovery growth influences the leaf and nodule traits remains unclear.A three-year field experiment was conducted to evaluate the effects of genotypes,i.e.,supernodulating(nts1007),Nandou 12(ND12),and Guixia 3(GX3),and crop configurations,i.e.,the interspecific row spacing of 45(I45),60(I60),75 cm(I75),and sole soybean(SS),on soybean recovery growth and N fixation.The results showed that intercropping reduced the soybean total leaf area(LA)by reducing both the leaf number(LN)and unit leaflet area(LUA),and it reduced the nodule dry weight(NW)by reducing both the nodule number(NN)and nodule diameter(ND)compared with the SS.The correlation and principal component analysis(PCA)indicated a co-variability of the leaf and nodule traits in response to the genotype and crop configuration interactions.During the recovery growth stages,the compensatory growth promoted soybean growth to reduce the gaps of leaf and nodule traits between intercropping and SS.The relative growth rates of ureide(RGR_U)and nitrogen(RGR_N)accumulation were higher in intercropping than in SS.Intercropping achieved more significant sucrose and starch contents compared with SS.ND12 and GX3 showed more robust compensatory growth than nts1007 in intercropping.Although the recovery growth of relay intercropping soybean improved biomass and nitrogen accumulation,ND12 gained a more significant partial land equivalent ratio(pLER)than GX3.The I60 treatment achieved more robust compensation effects on biomass and N accumulation than the other configurations.Meanwhile,I60 showed a higher nodule sucrose content and greater shoot ureide and N accumulation than SS.Finally,intercropping ND12 with maize using an interspecific row spacing of 60 cm was optimal for both yield advantage and N accumulation.展开更多
Weed incidence and biomass in tree crop plantations are mainly influenced by environmental, farm management practices and cropping systems. Manipulation of intercropping systems to improve weed management in coffee in...Weed incidence and biomass in tree crop plantations are mainly influenced by environmental, farm management practices and cropping systems. Manipulation of intercropping systems to improve weed management in coffee intercropped with oil palm requires a better understanding of spatial and temporal dynamics of weeds. To evaluate the effect of weed incidence and biomass in coffee intercropped with oil palm in avenue and hollow square arrangement, a study was carried out in Cocoa Research Institute of Nigeria (CRIN) in two locations. The locations are Idi-Ayunre (7°25'N, 3°24'E) (an alfisol) and Uhonmora (6°5'N, 5°50'E) (ultisol) in rainforest and derived savannah parts of Nigeria respectively. The experiment had three treatments comprising coffee sole (control), coffee with oil palm (Hollow square) arrangement and coffee with oil palm (Avenue) planting. Coffee was planted 3.0 m apart while oil palm was planted 9 m apart. Equal size of land area was used for coffee in each treatment. The experimental design was Randomized Complete Block (RCBD) with three replicates. Data on vegetative growth of coffee, weed incidence and biomass were taken at three-monthly intervals. The result showed that coffee/oil palm (Hollow Square) had the least weed incidence and biomass closely followed by coffee/oil palm (Avenue) planting. The control had the highest weed biomass which was significantly different from Hollow square and Avenue planting at P ≤ 0.05. The morphological parameters on coffee followed the same pattern but Hollow square arrangement was significantly higher than Avenue and control at P ≤ 0.05.展开更多
[Objective] The paper was to study the effects of different ratios of N, P and K on yield of potato intercropped with sugarcane in Lateritic red earth area of Guangxi, and seek the best N, P and K ratio for nutrition ...[Objective] The paper was to study the effects of different ratios of N, P and K on yield of potato intercropped with sugarcane in Lateritic red earth area of Guangxi, and seek the best N, P and K ratio for nutrition model of potato inter- cropped with sugarcane. [Method]Two field experiments adopted the optimum com- pound design (311-A) were conducted in Long'an County of Guangxi Province in 2011 and 2012, respectively. The polynomial regression models of fertilizer applica- tion and quadratic of three factors were established by SAS statistical analysis soft- ware, and optimum nutrient simulation models of potato were obtained by computer processing. [Result] The combined application of low nitrogen and mid-high potassi- um and phosphorus fertilizer contributed to higher potato yield in experimental condi- tion. The regression model of potato yield (Yll and Y12) and dosage of N(X1), P (X2), K(X3) were established by using SAS statistical analysis software, in 2011 and 2012, respectively. They were Y11 =14 725.28 -415.39X1 +741.99X2 +607.83)(3-447.92X1X2- 144.09X1X3 -405.83X2X3 -267.82X1^2-795.67X2^2 -642.10X3^2, R =0.927 2; and Y12 =14 342.60 -896.25X1 +548.62X2 +925.51 X3 +67.81 X1X2 +531.60X1X3 -99.00X2X3 -904.00X1^2 - 1121.36X2^2-596.64X3^2,R=0.926 6. The regression mathematics model of potato yields preferably fit with actual situation in the locality, and have higher practical value, so it could be used for fertilizer decision and forecast. Using the computer to carry on the optimization, the N, P and K dosage of the best potato yield intercropped with sugarcane was obtained. The dosage of N, P2O5, K2O were 108.8-140.6, 172.5-204.4 and 285.9 kg/hm2, respectively. [Conclusion] The best N, P and K ratio of potato yield intercropped with sugarcane was 1:(1.23-1.68):(2.03-2.63).展开更多
[Objective]This study aimed to determine the number of microorganisms of cotton rhizosphere in a soil at various amounts of applied nitrogen fertilizer in a red date-cotton intercropping system. [Method] In the field ...[Objective]This study aimed to determine the number of microorganisms of cotton rhizosphere in a soil at various amounts of applied nitrogen fertilizer in a red date-cotton intercropping system. [Method] In the field experiment, nitrogen fer-tilizer was applied at 0, 150, 300, 450, 600, and 750 kg/hm2, respectively. The dy-namic changes of the populations of bacteria, fungi and actinomycetes at the rhizo-sphere of cotton intercropped with red date were investigated. [Result] Microbial populations significantly increased at nitrogen fertilizer of 300 and 450 kg/hm2 during bud, flowering and bol opening periods. The numbers of bacteria and actinomycetes were higher during flowering and bol opening stages than at bud stage. The num-ber of fungi slightly changed during the entire growth period. Appropriate amount of nitrogen fertilizer (300 to 600 kg/hm2) was favorable to the survival of the microor-ganisms in the soil under the intercropping system. [Conclusion] The study provides a guideline for screening and determining the optimum amount of applied nitrogen fertilizer.展开更多
A field experiment was conducted for intercropped winter wheat (Triticum aestivum) in 2002/2003 to evaluate the effects of limited supplemental irrigation on photosynthetic characteristics of intercropped winter whe...A field experiment was conducted for intercropped winter wheat (Triticum aestivum) in 2002/2003 to evaluate the effects of limited supplemental irrigation on photosynthetic characteristics of intercropped winter wheat in semiarid environment. The result indicated that significances occurred in grain yield between the intercropped wheat treatments and sole wheat control (CKW), and in yield between the irrigated intercropped wheat plots (WC2W, WC3W, WC5W) and not irrigated (WC1W) except for WC4W plots with nearly the same yield as WC1W. In comparison with CKW, 11.8%, 18.5%, 23.6%, 11.5%, and 30.7% of yield increase in the intercropped wheat plots were obtained in WCIW, WC2W, WC3W, WC4W, and WC5W respectively. Compared to the intercropped wheat plots without irrigation, yields in WC2W, WC3W, and WC5W were improved by 5.9%, 10.5%, and 16.9%, respectively. The dynamics of CGR and NAR in both intercropped (WC1W-WC5W) and solely cropped wheat (CKW) showed a type of "single peak" curves, with both the maximum CGR and NAR occurred during jointing to heading (14/4-6/5) of wheat. In addition, soil water potential (SWP) fluctuated as a function of the precipitation and limited supplemental irrigation.展开更多
To ascertain the possibility of cultivating maize using biological nitrogen fixation(BNF)by leguminous green manure crops in maize/leguminous green manure intercropping systems,BNF and nitrogen(N)transfer were studied...To ascertain the possibility of cultivating maize using biological nitrogen fixation(BNF)by leguminous green manure crops in maize/leguminous green manure intercropping systems,BNF and nitrogen(N)transfer were studied in Xining and Wuwei,two typical northwestern Chinese cities.The experimental treatments included monocultured maize,monocultured green manures(hairy vetch and common vetch),and their intercropping systems.The proportions of N derived from the atmosphere(%N_(dfa))in intercropping systems were not significantly different from that in monocultured green manure systems at either experimental site,except for that in hairy vetch(HV)in Xining.The amount of N derived from the atmosphere(N_(dfa))of common vetch(CV)significantly decreased from 1.16 and 1.10 g/pot in monoculture to 0.77 and 0.55 g/pot when intercropped with maize,in Xining and Wuwei,respectively,and the N_(dfa) of HV when intercropped significantly decreased from 1.02 to 0.48 g/pot in Xining.In the intercropping systems in Xining and Wuwei,the amounts of N transferred(N_(transfer))from CV to maize were 21.54 and 26.81 mg/pot,accounting for 32.9 and 5.9%respectively of the N accumulation in maize,and the values of N_(transfer) from HV to maize were 39.61 and 46.22 mg/pot,accounting for 37.0 and 23.3%,respectively,of the N accumulation in maize.Path analysis showed that soil nutrient and green manure biomass were mainly related to N_(dfa),and thatδ^(15) N had a primary relationship with N_(transfer).We found that 5.9-37.0%of N accumulation in maize was transferred from green manures,and that the N transfer ability to maize of HV was higher than that of CV.In conclusion,intercropping with leguminous green manures provided a feasible way for maize to effectively utilize biologicallyfixed N.展开更多
The experiment was conducted on intercropping of lupine (Lupinus albus L.) with wheat (Triticum aestivum), barley (Hordeum vulgar) and finger millet (Eleusine coracana) in 2009 at Adet Agricultural research station, i...The experiment was conducted on intercropping of lupine (Lupinus albus L.) with wheat (Triticum aestivum), barley (Hordeum vulgar) and finger millet (Eleusine coracana) in 2009 at Adet Agricultural research station, in Western Gojam. The treatments were sole wheat at a seed rate of 175 kg/ha, sole barley at a seed rate of 125 kg/ha, sole finger millet at a seed rate of 30 kg/ha, sole lupine at a seed rate of 90 kg/ha, and an additive series of 25, 50 and 75% of the sole lupine seed rate combined with the full cereal seed rate to determine the effect of intercropping on competition (CR) among the different species, the land equivalent and area time equivalent ratios (LER and ATER);and the economic feasibility of each intercropping system(MAI) as compared with sole cropped. The experimental design was a completely randomized block with nine intercropping and four sole cropping systems in three replications. Lupine was planted in rows after establishment of main crops. JMP-5 (SAS, 2002) software’s was used to compute the analysis of variance. Partial LER of lupine was lower than LER of cereal, indicating an advantage for main crops and a disadvantage for the minor crop. Values of ATER showed 4.9%-31.3% and 11.1%-37.8% advantage in lupine-wheat and lupine-finger millet combinations, respectively, whilst lupine-barley combinations showed ATER of 54.5%-60.9% disadvantage. CR showed dominancy of wheat and barley over lupine while lupine was higher CR than finger millet. Positive MAI values were recorded in lupine-wheat and lupine-finger millet mixtures indicating that these intercropping systems were a definite yield advantage and the most profitable as compared to sole cropped. In conclusion, the lupine-finger millet mixture at the 50:100 seeding ratio and 75:100 seeding ratio;and lupine-wheat mixture at the 75:100 seeding ratio indicated a significant advantage from intercropping which was attributed to better MAI and land use efficiency (higher LER and ATER), lower CR and thereby enhanced sustainability of crop production in West Gojam, but the other socio-economic and cost of production aspects of intercropping should also be assessed especially under small scale farmers’ conditions.展开更多
An intercropping experiment involving coffee (sole), coffee/rice, coffee/plantain and coffee/ rice/plantain was carried out between 2007 and 2008 at the Cocoa Research Institute of Nigeria (CRIN) Uhonmora Substation, ...An intercropping experiment involving coffee (sole), coffee/rice, coffee/plantain and coffee/ rice/plantain was carried out between 2007 and 2008 at the Cocoa Research Institute of Nigeria (CRIN) Uhonmora Substation, Edo State situated in a derived Guinea Savanna agro-ecological zone of Nigeria. The experiment was a Randomized Complete Block Design (RCBD) with above mentioned treatment and replicated three times. The spacing used for coffee and plantain was 3 m apart respectively while rice was sown 30 cm apart. Morphological parameters such as plant height, stem girth, leaf area and canopy score were taken on coffee monthly while the survival count were taken after two months of field establishment. Yields of the component crops were also collected at maturity. Data collected were subjected to statistical analysis of variance and LSD used to separate the means that were significant. Result obtained showed 98% survival without any significant difference among the treatments. On vegetative growth, coffee/rice and coffee/plantain were significantly higher (p < 0.05) than coffee sole and coffee/rice/plantain in plant girth and leaf area but not significantly higher in all the months. Plant height however did not follow the same trend as height in coffee sole was slightly higher than coffee/rice. However, the difference was not significant. But coffee/plantain was still significantly higher (P < 0.05) than coffee/rice/plantain. The least was recorded in coffee/rice/plantain intercrop. Grain and bunch yields from rice and plantain respectively in the intercrops compare favourable well to what obtain from coffee sole. From the result obtained, it could be concluded that there was no deleterious effect on growth when rice and plantain were intercropped with coffee. Therefore coffee/rice and coffee/plantain intercropped with better performance could be recommended to coffee farmers in Nigeria rather than sole planting of coffee.展开更多
The practice of intercropping leguminous and gramineous crops is used for promoting sustainable agriculture,optimizing resource utilization,enhancing biodiversity,and reducing reliance on petroleum products.However,pr...The practice of intercropping leguminous and gramineous crops is used for promoting sustainable agriculture,optimizing resource utilization,enhancing biodiversity,and reducing reliance on petroleum products.However,promoting conventional intercropping strategies in modern agriculture can prove challenging.The innovative technology of soybean maize strip intercropping(SMSI)has been proposed as a solution.This system has produced remarkable results in improving domestic soybean and maize production for both food security and sustainable agriculture.In this article,we provide an overview of SMSI and explain how it differs from traditional intercropping.We also discuss the core principles that foster higher yields and the prospects for its future development.展开更多
Barshore is a small village in the Pishin District,Balochistan,Pakistan,with dry summers and cold rainy winters.This is an agrarian region,mostly with orchards of various fruit trees.This study investigated the physic...Barshore is a small village in the Pishin District,Balochistan,Pakistan,with dry summers and cold rainy winters.This is an agrarian region,mostly with orchards of various fruit trees.This study investigated the physico-chemical properties and macrofauna of soils under various agricultural management practices of this region.The concentrations of soil organic matter(SOM),soil organic carbon(SOC),nutrients,pH,electrical conductivity,soil texture,and the abundance and number of species of soil macrofauna of the agricultural fields were measured.Fifteen agricultural fields were sampled.Fourteen fields were orchards of apple,apricot or the mixture of apple and apricot trees and one field was a cropland,cultivated with wheat as a monocrop.The orchards were under conservation agricultural practices;whereas,the cropland was under conventional management.These agricultural lands were 2-26 years old.The concentration of soil organic matter(SOM)in the upper 0-10 cm depth of these field sites ranged from 11.6 g kg^(-1)to 32.8 g kg^(-1)soil.As compared to cropland,orchards had significantly higher concentration of SOM and SOC.A total of 18 soil macrofauna species were found and the most common and abundant were ants(Monomorium minimum,Camponotus pennsylvanicus,Solenopsis invicta,and Lasius niger)followed by Arion ssp.(Brown Slug)and earthworm Lumbricus terrestris.Regression analysis revealed non-significant relationship of the age and the concentration of SOM with the number of macrofauna species and with the concentrations of total mineral nitrogen,bioavailable phosphorus and clay.The existence of ants had no relationship with the concentration of SOM;whereas,existence of Lumbricus terrestris tended to had a positive relationship with the concentration of SOM.The field of tree-based intercropping system was 2 years of age since the land was converted from rangeland to a cropland,had two ant species coexisting.This indicates the positive influence of crop diversification on soil macrofauna.展开更多
Recent publications have highlighted the development of an alternate cotton-peanut intercropping as a novel strat-egy to enhance agricultural productivity.In this article,we provide an overview of the progress made in...Recent publications have highlighted the development of an alternate cotton-peanut intercropping as a novel strat-egy to enhance agricultural productivity.In this article,we provide an overview of the progress made in the alternate cotton-peanut intercropping,specifically focusing on its yield benefits,environmental impacts,and the underlying mechanisms.In addition,we advocate for future investigations into the selection or development of appropriate crop varieties and agricultural equipment,pest management options,and the mechanisms of root-canopy interactions.This review is intended to provide a valuable reference for understanding and adopting an alternate intercropping system for sustainable cotton production.展开更多
Sugarcane/soybean intercropping with reduced nitrogen addition is an important sustainable agricultural pattern that can alter soil ecological functions,thereby affecting straw decomposition in the soil.However,the me...Sugarcane/soybean intercropping with reduced nitrogen addition is an important sustainable agricultural pattern that can alter soil ecological functions,thereby affecting straw decomposition in the soil.However,the mechanisms underlying changes in soil organic carbon(SOC)composition and microbial communities during straw decomposition under long-term intercropping with reduced nitrogen addition remain unclear.In this study,we conducted an in-situ microplot incubation experiment with^(13)C-labeled soybean straw residue addition in a two-factor(cropping pattern:sugarcane monoculture(MS)and sugarcane/soybean intercropping(SB);nitrogen addition levels:reduced nitrogen addition(N1)and conventional nitrogen addition(N2))long-term experimental field plot.The results showed that the SBN1 treatment significantly increased the residual particulate organic carbon(POC)and residual microbial biomass carbon(MBC)contents during straw decomposition,and the straw carbon in soil was mainly conserved as POC.Straw addition changed the structure and reduced the diversity of the soil microbial community,but microbial diversity gradually recovered with decomposition time.During straw decomposition,the intercropping pattern significantly increased the relative abundances of Firmicutes and Ascomycota.In addition,straw addition reduced microbial network complexity in the sugarcane/soybean intercropping pattern but increased it in the sugarcane monoculture pattern.Nevertheless,microbial network complexity remained higher in the SBN1 treatment than in the MSN1 treatment.In general,the SBN1 treatment significantly increased the diversity of microbial communities and the relative abundance of microorganisms associated with organic matter decomposition,and the changes in microbial communities were mainly driven by the residual labile SOC fractions.These findings suggest that more straw carbon can be sequestered in the soil under sugarcane/soybean intercropping with reduced nitrogen addition to maintain microbial diversity and contribute to the development of sustainable agriculture.展开更多
Wheat is one of the most important cereals in the world, serving as a staple for millions globally. In the wake of the geopolitical crisis between Russia and Ukraine, it has become incumbent for many countries to inve...Wheat is one of the most important cereals in the world, serving as a staple for millions globally. In the wake of the geopolitical crisis between Russia and Ukraine, it has become incumbent for many countries to invest in wheat production. Improving cropping systems for wheat production is paramount. Intercropping cereals with legumes has tremendous advantages. Therefore, this study was designed to optimize wheat production by intercropping it with soybean at different densities. Between March and August 2023, a randomized complete block design trial was conducted in Bambili, North West of Cameroon with treatments T1 (wheat monocrop at 200,000 plants ha<sup>−</sup><sup>1</sup>), T2 (soybean monocrop at 250,000 plants ha<sup>−</sup><sup>1</sup>), T3 (200,000 wheat and 125,000 soybean ha<sup>−</sup><sup>1</sup>), T4 (100,000 wheat and 250,000 soybean ha<sup>−</sup><sup>1</sup>), T5 (200,000 wheat and 250,000 soybean ha<sup>−</sup><sup>1</sup>) and T6 (100,000 wheat and 125,000 soybean ha<sup>−</sup><sup>1</sup>). Results revealed that growth parameters of wheat were not significantly influenced by monocrop or intercrop. The yield of wheat was significantly higher in the monocrop than the intercrop treatments, with slight variation amongst the intercrop treatments. Soybean yield was higher in the monocrop than in the intercrop, with no variations amongst the intercrop treatments. Only the land equivalence ratio (LER) for T5 was greater than 1.0. The competitive ratio for T5 was 0.54 for wheat and 1.90 for soybean, comparatively lower than the other monocrop treatments. Intercropping wheat and soybean at 200,000:250,000 ratio is recommended.展开更多
In recent years,the area dedicated to cotton cultivation in eastern Henan Province has experienced a continuous decline.Developing efficient multi-cropping systems for cotton and increasing the multiple cropping index...In recent years,the area dedicated to cotton cultivation in eastern Henan Province has experienced a continuous decline.Developing efficient multi-cropping systems for cotton and increasing the multiple cropping index represent effective strategies to stabilize the cotton planting area and enhance the income of cotton farmers.This paper presents an overview of intercropping systems and the benefits associated with cotton rotation and intercropping practices.Specifically,it discusses the"early maturing cotton-wheat"rotation system,the"cotton-watermelon"intercropping system,the"cotton-Dutch bean"intercropping system,and the"early maturing cotton-peanut-garlic"intercropping system.展开更多
Rubber agroforestry systems positively impact soil microbial communities. This study employed a bibliometric approach to explore the research status, hotspots, and development trends related to these effects. Using Ci...Rubber agroforestry systems positively impact soil microbial communities. This study employed a bibliometric approach to explore the research status, hotspots, and development trends related to these effects. Using CiteSpace software, we visually analyzed research literature from the Web of Science (WOS) core database, spanning 2004 to 2024. The focus was on the impact of rubber agroforestry ecosystems on soil microbial communities. The results indicate significant attention from Chinese researchers, who have published numerous influential papers in this field. Authors Liu Wenjie have contributed the most papers, although no stable core author group exists. The Chinese Academy of Sciences is the leading research institution in terms of publication volume. While there is close collaboration between different institutions and countries, the intensity of researcher cooperation is low. The most cited literature emphasizes soil nutrients and structure in rubber agroforestry, laying a foundation for soil microorganism studies. Most cited journals are from countries like Netherlands and the United Kingdom. Key research areas include the effects of rubber intercropping on soil microbial communities, agroforestry management, and soil health. Research development can be divided into three stages: the initial stage (2010-2015), the development stage (2015-2020), and the mature stage (2020-2024). Current studies show that rubber intercropping and rubber-based agroforestry systems enhance soil microbial communities, positively impacting soil health. This paper provides a theoretical basis for the sustainable development of rubber agroforestry systems and improved management plans. Future research could explore the effects of species composition on soil microbiological characteristics and develop methods for species interactions. An in-depth study of the soil microbial community’s structure and function, and its relationship with rubber trees, is crucial. Developing effective, rationally designed rubber agroforestry systems and underground soil microbiome technology will promote sustainability and improve plantation productivity.展开更多
Before the advent of cheap, synthetic fertilizers, legumes were commonly used as green manure crops for their ability to fix atmospheric nitrogen (N). A three-year study at Overton, TX examined legume integration into...Before the advent of cheap, synthetic fertilizers, legumes were commonly used as green manure crops for their ability to fix atmospheric nitrogen (N). A three-year study at Overton, TX examined legume integration into high-biomass sorghum (Sorghum bicolor L.) production systems on a Lilbert loamy fine sand recently cultivated after a fertilized bermudagrass [Cynodon dactylon (L.) Pers.] pasture. In this split-split plot design, ‘Dixie’ crimson clover (Trifolium incarnatum L.) and ‘Iron and Clay’ cowpea (Vigna unguiculata L.) were integrated into a high-biomass sorghum production system to evaluate impacts on N concentration, C concentration, and yield of high-biomass sorghum and their impacts on soil total N and soil organic carbon (SOC). Main plots were split into crimson clover green manure (CLGM) and winter fallow (FALL) followed by three sub-plots split into warm-season crop rotations: cowpea green manure (CPGM), cowpea-sorghum intercrop (CPSR), and sorghum monocrop (SORG). Three N fertilizer treatments (0, 45, 90 kg N∙ha−1) were randomized and applied as sub-sub plots. The CLGM increased (P sorghum biomass yield (16.5 t DM∙ha−1) 28% in year three but had no effect in the first two years. The CPSR treatment reduced sorghum yield up to 62% compared to SORG;whereas CPGM increased sorghum yield 56% and 18% the two years following cowpea incorporation. Rate of N fertilizer had no effect on sorghum biomass yield. Decrease in SOC and soil N over time indicated mineralization of organic N and may explain why no N fertilizer response was observed in sorghum biomass yield. Cowpea showed strong potential as a green manure crop but proved to be too competitive for successful intercropping in high-biomass sorghum production systems.展开更多
The study of Nitrogen fixation, uptake, and leaching at different soil depths in the co-cultivation of maize and soybean under phosphorus fertilization is important for sustainable agriculture. This study was conducte...The study of Nitrogen fixation, uptake, and leaching at different soil depths in the co-cultivation of maize and soybean under phosphorus fertilization is important for sustainable agriculture. This study was conducted in Quzhou, Hebei Province, China, with MC812 maize and Jidou12 soybean varieties. Soil samples were taken from each plot to create a composite sample. The results show that nitrogen concentration varies at different depths and is higher in all treatments between 40 and 100 cm. Incorporating intercropping of maize and soybeans into farming practices can lead to more sustainable and environmentally friendly agriculture in China.展开更多
Intercropping, particularly the combination of maize and soybeans, has been widely recognized for its potential to improve nitrogen uptake and promote sustainable agriculture. This study examines the patterns of nitro...Intercropping, particularly the combination of maize and soybeans, has been widely recognized for its potential to improve nitrogen uptake and promote sustainable agriculture. This study examines the patterns of nitrogen uptake in maize and soybean intercropping systems under different growth stages and phosphorus fertilization levels and investigates the influence of nitrogen uptake on growth parameters such as plant height, leaf area, and biomass accumulation in the maize/soybean intercrop under different phosphorus fertilization regimes. The study also collected chlorophyll samples at different growth stages of maize in monoculture and intercropping with maize or soybean. The results showed that plant height was greater in V10 in both fertilized and unfertilized treatments for intercropped maize and soybean, and chlorophyll concentration was higher in VT intercropped maize. The results also showed a higher accumulation of biomass. Understanding the growth dynamics of these plants in monoculture and intercropping systems and the impact of fertilization practices is crucial for optimizing crop productivity and sustainability in agricultural systems.展开更多
Cereal and legume intercropping has been widely adopted to increase crop productivity in sustainable farming systems worldwide.Among different intercropping combinations,millet and peanut intercropping can be adapted ...Cereal and legume intercropping has been widely adopted to increase crop productivity in sustainable farming systems worldwide.Among different intercropping combinations,millet and peanut intercropping can be adapted to most waterlimited areas.However,there are few studies on the differences in yield characteristics and nitrogen use efficiency between millet/peanut intercropping and monocultures under different nitrogen (N) application rates.The objective of this study was to determine the yield advantages and economic benefits,as well as the appropriate N application rate,of millet/peanut intercropping.A two-yearfield experiment was conducted with three cropping patterns (monoculture millet,monoculture peanut and millet/peanut intercropping) and four N rates (0,75,150 and 225 kg ha^(-1)).The results showed that the land equivalent ratio (LER) and net effect (NE) of the intercropping system reached their highest levels at the N input of 150 kg ha^(-1)in 2018 and 2019 (1.04 for LER,0.347 Mg ha^(-1)for NE,averaged across two years).Millet was the dominant crop in the intercropping system (aggressivity of millet and peanut (Amp)>0,competitive ratio of millet and peanut (CRmp)>1),and millet yields achieved their highest values at N inputs of 225 kg ha^(-1)for monoculture and 150 kg ha^(-1)for intercropping.NUE reached its highest levels with N inputs of 150 kg ha^(-1)for all planting patterns over the two years.Intercropping combined with an N input of 150 kg ha^(-1)achieved the highest net income of 2 791 USD ha^(-1),with a benefit-cost ratio of 1.56,averaged over the two years.From the perspective of economics and agricultural sustainable development,millet/peanut intercropping at 150 kg N ha^(-1)seems to be a promising alternative to millet or peanut monoculture.展开更多
Wheat rust diseases are one of the major types of fungal diseases that cause substantial yield quality losses of 15%–20%every year.The wheat rust diseases are identified either through experienced evaluators or compu...Wheat rust diseases are one of the major types of fungal diseases that cause substantial yield quality losses of 15%–20%every year.The wheat rust diseases are identified either through experienced evaluators or computerassisted techniques.The experienced evaluators take time to identify the disease which is highly laborious and too costly.If wheat rust diseases are predicted at the development stages,then fungicides are sprayed earlier which helps to increase wheat yield quality.To solve the experienced evaluator issues,a combined region extraction and cross-entropy support vector machine(CE-SVM)model is proposed for wheat rust disease identification.In the proposed system,a total of 2300 secondary source images were augmented through flipping,cropping,and rotation techniques.The augmented images are preprocessed by histogram equalization.As a result,preprocessed images have been applied to region extraction convolutional neural networks(RCNN);Fast-RCNN,Faster-RCNN,and Mask-RCNN models for wheat plant patch extraction.Different layers of region extraction models construct a feature vector that is later passed to the CE-SVM model.As a result,the Gaussian kernel function in CE-SVM achieves high F1-score(88.43%)and accuracy(93.60%)for wheat stripe rust disease classification.展开更多
基金supported by the China Agriculture Research System of MOF and MARA(Soybean,CARS04-PS20)the National Natural Science Foundation of China(3187101212 and 31671625).
文摘Maize(Zea mays L.)-soybean(Glycine max L.Merr.)relay intercropping provides a way to enhance land productivity.However,the late-planted soybean suffers from shading by the maize.After maize harvest,how the recovery growth influences the leaf and nodule traits remains unclear.A three-year field experiment was conducted to evaluate the effects of genotypes,i.e.,supernodulating(nts1007),Nandou 12(ND12),and Guixia 3(GX3),and crop configurations,i.e.,the interspecific row spacing of 45(I45),60(I60),75 cm(I75),and sole soybean(SS),on soybean recovery growth and N fixation.The results showed that intercropping reduced the soybean total leaf area(LA)by reducing both the leaf number(LN)and unit leaflet area(LUA),and it reduced the nodule dry weight(NW)by reducing both the nodule number(NN)and nodule diameter(ND)compared with the SS.The correlation and principal component analysis(PCA)indicated a co-variability of the leaf and nodule traits in response to the genotype and crop configuration interactions.During the recovery growth stages,the compensatory growth promoted soybean growth to reduce the gaps of leaf and nodule traits between intercropping and SS.The relative growth rates of ureide(RGR_U)and nitrogen(RGR_N)accumulation were higher in intercropping than in SS.Intercropping achieved more significant sucrose and starch contents compared with SS.ND12 and GX3 showed more robust compensatory growth than nts1007 in intercropping.Although the recovery growth of relay intercropping soybean improved biomass and nitrogen accumulation,ND12 gained a more significant partial land equivalent ratio(pLER)than GX3.The I60 treatment achieved more robust compensation effects on biomass and N accumulation than the other configurations.Meanwhile,I60 showed a higher nodule sucrose content and greater shoot ureide and N accumulation than SS.Finally,intercropping ND12 with maize using an interspecific row spacing of 60 cm was optimal for both yield advantage and N accumulation.
文摘Weed incidence and biomass in tree crop plantations are mainly influenced by environmental, farm management practices and cropping systems. Manipulation of intercropping systems to improve weed management in coffee intercropped with oil palm requires a better understanding of spatial and temporal dynamics of weeds. To evaluate the effect of weed incidence and biomass in coffee intercropped with oil palm in avenue and hollow square arrangement, a study was carried out in Cocoa Research Institute of Nigeria (CRIN) in two locations. The locations are Idi-Ayunre (7°25'N, 3°24'E) (an alfisol) and Uhonmora (6°5'N, 5°50'E) (ultisol) in rainforest and derived savannah parts of Nigeria respectively. The experiment had three treatments comprising coffee sole (control), coffee with oil palm (Hollow square) arrangement and coffee with oil palm (Avenue) planting. Coffee was planted 3.0 m apart while oil palm was planted 9 m apart. Equal size of land area was used for coffee in each treatment. The experimental design was Randomized Complete Block (RCBD) with three replicates. Data on vegetative growth of coffee, weed incidence and biomass were taken at three-monthly intervals. The result showed that coffee/oil palm (Hollow Square) had the least weed incidence and biomass closely followed by coffee/oil palm (Avenue) planting. The control had the highest weed biomass which was significantly different from Hollow square and Avenue planting at P ≤ 0.05. The morphological parameters on coffee followed the same pattern but Hollow square arrangement was significantly higher than Avenue and control at P ≤ 0.05.
基金Supported by Guangxi Science and Technology Research Projects (GKG10100004-10)The Earmarked Fund for China Agriculture Research System (CARS-20-3-5)Science and Technology Development Fund Project of Guangxi Academy of Agricultural Science (GNK 2011jz07)~~
文摘[Objective] The paper was to study the effects of different ratios of N, P and K on yield of potato intercropped with sugarcane in Lateritic red earth area of Guangxi, and seek the best N, P and K ratio for nutrition model of potato inter- cropped with sugarcane. [Method]Two field experiments adopted the optimum com- pound design (311-A) were conducted in Long'an County of Guangxi Province in 2011 and 2012, respectively. The polynomial regression models of fertilizer applica- tion and quadratic of three factors were established by SAS statistical analysis soft- ware, and optimum nutrient simulation models of potato were obtained by computer processing. [Result] The combined application of low nitrogen and mid-high potassi- um and phosphorus fertilizer contributed to higher potato yield in experimental condi- tion. The regression model of potato yield (Yll and Y12) and dosage of N(X1), P (X2), K(X3) were established by using SAS statistical analysis software, in 2011 and 2012, respectively. They were Y11 =14 725.28 -415.39X1 +741.99X2 +607.83)(3-447.92X1X2- 144.09X1X3 -405.83X2X3 -267.82X1^2-795.67X2^2 -642.10X3^2, R =0.927 2; and Y12 =14 342.60 -896.25X1 +548.62X2 +925.51 X3 +67.81 X1X2 +531.60X1X3 -99.00X2X3 -904.00X1^2 - 1121.36X2^2-596.64X3^2,R=0.926 6. The regression mathematics model of potato yields preferably fit with actual situation in the locality, and have higher practical value, so it could be used for fertilizer decision and forecast. Using the computer to carry on the optimization, the N, P and K dosage of the best potato yield intercropped with sugarcane was obtained. The dosage of N, P2O5, K2O were 108.8-140.6, 172.5-204.4 and 285.9 kg/hm2, respectively. [Conclusion] The best N, P and K ratio of potato yield intercropped with sugarcane was 1:(1.23-1.68):(2.03-2.63).
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(201003043-07)Scientific Research Program of Higher Education Institutions ofXinjiang Uygur Autonomous Region(XJEDU2012S14)+1 种基金National UndergraduateInnovative Training Project(201210758002)Fund for the Excellent Youth Scholars ofXinjiang Academy of Agricultural Sciences(xjnky-2012-009)~~
文摘[Objective]This study aimed to determine the number of microorganisms of cotton rhizosphere in a soil at various amounts of applied nitrogen fertilizer in a red date-cotton intercropping system. [Method] In the field experiment, nitrogen fer-tilizer was applied at 0, 150, 300, 450, 600, and 750 kg/hm2, respectively. The dy-namic changes of the populations of bacteria, fungi and actinomycetes at the rhizo-sphere of cotton intercropped with red date were investigated. [Result] Microbial populations significantly increased at nitrogen fertilizer of 300 and 450 kg/hm2 during bud, flowering and bol opening periods. The numbers of bacteria and actinomycetes were higher during flowering and bol opening stages than at bud stage. The num-ber of fungi slightly changed during the entire growth period. Appropriate amount of nitrogen fertilizer (300 to 600 kg/hm2) was favorable to the survival of the microor-ganisms in the soil under the intercropping system. [Conclusion] The study provides a guideline for screening and determining the optimum amount of applied nitrogen fertilizer.
文摘A field experiment was conducted for intercropped winter wheat (Triticum aestivum) in 2002/2003 to evaluate the effects of limited supplemental irrigation on photosynthetic characteristics of intercropped winter wheat in semiarid environment. The result indicated that significances occurred in grain yield between the intercropped wheat treatments and sole wheat control (CKW), and in yield between the irrigated intercropped wheat plots (WC2W, WC3W, WC5W) and not irrigated (WC1W) except for WC4W plots with nearly the same yield as WC1W. In comparison with CKW, 11.8%, 18.5%, 23.6%, 11.5%, and 30.7% of yield increase in the intercropped wheat plots were obtained in WCIW, WC2W, WC3W, WC4W, and WC5W respectively. Compared to the intercropped wheat plots without irrigation, yields in WC2W, WC3W, and WC5W were improved by 5.9%, 10.5%, and 16.9%, respectively. The dynamics of CGR and NAR in both intercropped (WC1W-WC5W) and solely cropped wheat (CKW) showed a type of "single peak" curves, with both the maximum CGR and NAR occurred during jointing to heading (14/4-6/5) of wheat. In addition, soil water potential (SWP) fluctuated as a function of the precipitation and limited supplemental irrigation.
基金financially supported by the China Agriculture Research System of MOF and MARA(CARS22)the National Natural Science Foundation of China(32072678)+3 种基金the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2020)the Chinese Outstanding Talents Program in Agricultural Sciencethe Protection and Utilization of Crop Germplasm Resources of China Green Manure(19200393)the Fund Project of Qinghai Academy of Agricultural Sciences(2019-NKY-06)。
文摘To ascertain the possibility of cultivating maize using biological nitrogen fixation(BNF)by leguminous green manure crops in maize/leguminous green manure intercropping systems,BNF and nitrogen(N)transfer were studied in Xining and Wuwei,two typical northwestern Chinese cities.The experimental treatments included monocultured maize,monocultured green manures(hairy vetch and common vetch),and their intercropping systems.The proportions of N derived from the atmosphere(%N_(dfa))in intercropping systems were not significantly different from that in monocultured green manure systems at either experimental site,except for that in hairy vetch(HV)in Xining.The amount of N derived from the atmosphere(N_(dfa))of common vetch(CV)significantly decreased from 1.16 and 1.10 g/pot in monoculture to 0.77 and 0.55 g/pot when intercropped with maize,in Xining and Wuwei,respectively,and the N_(dfa) of HV when intercropped significantly decreased from 1.02 to 0.48 g/pot in Xining.In the intercropping systems in Xining and Wuwei,the amounts of N transferred(N_(transfer))from CV to maize were 21.54 and 26.81 mg/pot,accounting for 32.9 and 5.9%respectively of the N accumulation in maize,and the values of N_(transfer) from HV to maize were 39.61 and 46.22 mg/pot,accounting for 37.0 and 23.3%,respectively,of the N accumulation in maize.Path analysis showed that soil nutrient and green manure biomass were mainly related to N_(dfa),and thatδ^(15) N had a primary relationship with N_(transfer).We found that 5.9-37.0%of N accumulation in maize was transferred from green manures,and that the N transfer ability to maize of HV was higher than that of CV.In conclusion,intercropping with leguminous green manures provided a feasible way for maize to effectively utilize biologicallyfixed N.
文摘The experiment was conducted on intercropping of lupine (Lupinus albus L.) with wheat (Triticum aestivum), barley (Hordeum vulgar) and finger millet (Eleusine coracana) in 2009 at Adet Agricultural research station, in Western Gojam. The treatments were sole wheat at a seed rate of 175 kg/ha, sole barley at a seed rate of 125 kg/ha, sole finger millet at a seed rate of 30 kg/ha, sole lupine at a seed rate of 90 kg/ha, and an additive series of 25, 50 and 75% of the sole lupine seed rate combined with the full cereal seed rate to determine the effect of intercropping on competition (CR) among the different species, the land equivalent and area time equivalent ratios (LER and ATER);and the economic feasibility of each intercropping system(MAI) as compared with sole cropped. The experimental design was a completely randomized block with nine intercropping and four sole cropping systems in three replications. Lupine was planted in rows after establishment of main crops. JMP-5 (SAS, 2002) software’s was used to compute the analysis of variance. Partial LER of lupine was lower than LER of cereal, indicating an advantage for main crops and a disadvantage for the minor crop. Values of ATER showed 4.9%-31.3% and 11.1%-37.8% advantage in lupine-wheat and lupine-finger millet combinations, respectively, whilst lupine-barley combinations showed ATER of 54.5%-60.9% disadvantage. CR showed dominancy of wheat and barley over lupine while lupine was higher CR than finger millet. Positive MAI values were recorded in lupine-wheat and lupine-finger millet mixtures indicating that these intercropping systems were a definite yield advantage and the most profitable as compared to sole cropped. In conclusion, the lupine-finger millet mixture at the 50:100 seeding ratio and 75:100 seeding ratio;and lupine-wheat mixture at the 75:100 seeding ratio indicated a significant advantage from intercropping which was attributed to better MAI and land use efficiency (higher LER and ATER), lower CR and thereby enhanced sustainability of crop production in West Gojam, but the other socio-economic and cost of production aspects of intercropping should also be assessed especially under small scale farmers’ conditions.
文摘An intercropping experiment involving coffee (sole), coffee/rice, coffee/plantain and coffee/ rice/plantain was carried out between 2007 and 2008 at the Cocoa Research Institute of Nigeria (CRIN) Uhonmora Substation, Edo State situated in a derived Guinea Savanna agro-ecological zone of Nigeria. The experiment was a Randomized Complete Block Design (RCBD) with above mentioned treatment and replicated three times. The spacing used for coffee and plantain was 3 m apart respectively while rice was sown 30 cm apart. Morphological parameters such as plant height, stem girth, leaf area and canopy score were taken on coffee monthly while the survival count were taken after two months of field establishment. Yields of the component crops were also collected at maturity. Data collected were subjected to statistical analysis of variance and LSD used to separate the means that were significant. Result obtained showed 98% survival without any significant difference among the treatments. On vegetative growth, coffee/rice and coffee/plantain were significantly higher (p < 0.05) than coffee sole and coffee/rice/plantain in plant girth and leaf area but not significantly higher in all the months. Plant height however did not follow the same trend as height in coffee sole was slightly higher than coffee/rice. However, the difference was not significant. But coffee/plantain was still significantly higher (P < 0.05) than coffee/rice/plantain. The least was recorded in coffee/rice/plantain intercrop. Grain and bunch yields from rice and plantain respectively in the intercrops compare favourable well to what obtain from coffee sole. From the result obtained, it could be concluded that there was no deleterious effect on growth when rice and plantain were intercropped with coffee. Therefore coffee/rice and coffee/plantain intercropped with better performance could be recommended to coffee farmers in Nigeria rather than sole planting of coffee.
基金supported by the National Natural Science Foundation of China(31971853)。
文摘The practice of intercropping leguminous and gramineous crops is used for promoting sustainable agriculture,optimizing resource utilization,enhancing biodiversity,and reducing reliance on petroleum products.However,promoting conventional intercropping strategies in modern agriculture can prove challenging.The innovative technology of soybean maize strip intercropping(SMSI)has been proposed as a solution.This system has produced remarkable results in improving domestic soybean and maize production for both food security and sustainable agriculture.In this article,we provide an overview of SMSI and explain how it differs from traditional intercropping.We also discuss the core principles that foster higher yields and the prospects for its future development.
基金We are grateful to the Department of Soil Science,Agricultural,Research Institute,Quetta,Pakistan for provision of laboratory facilities for chemical analysis of soil samples.We extend our gratitude to the Department of Zoology,University of Balochistan,Pakistan for the identification of soil fauna。
文摘Barshore is a small village in the Pishin District,Balochistan,Pakistan,with dry summers and cold rainy winters.This is an agrarian region,mostly with orchards of various fruit trees.This study investigated the physico-chemical properties and macrofauna of soils under various agricultural management practices of this region.The concentrations of soil organic matter(SOM),soil organic carbon(SOC),nutrients,pH,electrical conductivity,soil texture,and the abundance and number of species of soil macrofauna of the agricultural fields were measured.Fifteen agricultural fields were sampled.Fourteen fields were orchards of apple,apricot or the mixture of apple and apricot trees and one field was a cropland,cultivated with wheat as a monocrop.The orchards were under conservation agricultural practices;whereas,the cropland was under conventional management.These agricultural lands were 2-26 years old.The concentration of soil organic matter(SOM)in the upper 0-10 cm depth of these field sites ranged from 11.6 g kg^(-1)to 32.8 g kg^(-1)soil.As compared to cropland,orchards had significantly higher concentration of SOM and SOC.A total of 18 soil macrofauna species were found and the most common and abundant were ants(Monomorium minimum,Camponotus pennsylvanicus,Solenopsis invicta,and Lasius niger)followed by Arion ssp.(Brown Slug)and earthworm Lumbricus terrestris.Regression analysis revealed non-significant relationship of the age and the concentration of SOM with the number of macrofauna species and with the concentrations of total mineral nitrogen,bioavailable phosphorus and clay.The existence of ants had no relationship with the concentration of SOM;whereas,existence of Lumbricus terrestris tended to had a positive relationship with the concentration of SOM.The field of tree-based intercropping system was 2 years of age since the land was converted from rangeland to a cropland,had two ant species coexisting.This indicates the positive influence of crop diversification on soil macrofauna.
基金National Natural Science Foundation of China(32101844)Shandong Provincial Natural Science Foundation(ZR2021QC188 and ZR2022MC103).
文摘Recent publications have highlighted the development of an alternate cotton-peanut intercropping as a novel strat-egy to enhance agricultural productivity.In this article,we provide an overview of the progress made in the alternate cotton-peanut intercropping,specifically focusing on its yield benefits,environmental impacts,and the underlying mechanisms.In addition,we advocate for future investigations into the selection or development of appropriate crop varieties and agricultural equipment,pest management options,and the mechanisms of root-canopy interactions.This review is intended to provide a valuable reference for understanding and adopting an alternate intercropping system for sustainable cotton production.
基金supported by the China National Key R&D Program during the 14th Five-year Plan Period(2022YFD1901603)。
文摘Sugarcane/soybean intercropping with reduced nitrogen addition is an important sustainable agricultural pattern that can alter soil ecological functions,thereby affecting straw decomposition in the soil.However,the mechanisms underlying changes in soil organic carbon(SOC)composition and microbial communities during straw decomposition under long-term intercropping with reduced nitrogen addition remain unclear.In this study,we conducted an in-situ microplot incubation experiment with^(13)C-labeled soybean straw residue addition in a two-factor(cropping pattern:sugarcane monoculture(MS)and sugarcane/soybean intercropping(SB);nitrogen addition levels:reduced nitrogen addition(N1)and conventional nitrogen addition(N2))long-term experimental field plot.The results showed that the SBN1 treatment significantly increased the residual particulate organic carbon(POC)and residual microbial biomass carbon(MBC)contents during straw decomposition,and the straw carbon in soil was mainly conserved as POC.Straw addition changed the structure and reduced the diversity of the soil microbial community,but microbial diversity gradually recovered with decomposition time.During straw decomposition,the intercropping pattern significantly increased the relative abundances of Firmicutes and Ascomycota.In addition,straw addition reduced microbial network complexity in the sugarcane/soybean intercropping pattern but increased it in the sugarcane monoculture pattern.Nevertheless,microbial network complexity remained higher in the SBN1 treatment than in the MSN1 treatment.In general,the SBN1 treatment significantly increased the diversity of microbial communities and the relative abundance of microorganisms associated with organic matter decomposition,and the changes in microbial communities were mainly driven by the residual labile SOC fractions.These findings suggest that more straw carbon can be sequestered in the soil under sugarcane/soybean intercropping with reduced nitrogen addition to maintain microbial diversity and contribute to the development of sustainable agriculture.
文摘Wheat is one of the most important cereals in the world, serving as a staple for millions globally. In the wake of the geopolitical crisis between Russia and Ukraine, it has become incumbent for many countries to invest in wheat production. Improving cropping systems for wheat production is paramount. Intercropping cereals with legumes has tremendous advantages. Therefore, this study was designed to optimize wheat production by intercropping it with soybean at different densities. Between March and August 2023, a randomized complete block design trial was conducted in Bambili, North West of Cameroon with treatments T1 (wheat monocrop at 200,000 plants ha<sup>−</sup><sup>1</sup>), T2 (soybean monocrop at 250,000 plants ha<sup>−</sup><sup>1</sup>), T3 (200,000 wheat and 125,000 soybean ha<sup>−</sup><sup>1</sup>), T4 (100,000 wheat and 250,000 soybean ha<sup>−</sup><sup>1</sup>), T5 (200,000 wheat and 250,000 soybean ha<sup>−</sup><sup>1</sup>) and T6 (100,000 wheat and 125,000 soybean ha<sup>−</sup><sup>1</sup>). Results revealed that growth parameters of wheat were not significantly influenced by monocrop or intercrop. The yield of wheat was significantly higher in the monocrop than the intercrop treatments, with slight variation amongst the intercrop treatments. Soybean yield was higher in the monocrop than in the intercrop, with no variations amongst the intercrop treatments. Only the land equivalence ratio (LER) for T5 was greater than 1.0. The competitive ratio for T5 was 0.54 for wheat and 1.90 for soybean, comparatively lower than the other monocrop treatments. Intercropping wheat and soybean at 200,000:250,000 ratio is recommended.
基金Supported by China Agricultural Industry Research System(CARS-15-38).
文摘In recent years,the area dedicated to cotton cultivation in eastern Henan Province has experienced a continuous decline.Developing efficient multi-cropping systems for cotton and increasing the multiple cropping index represent effective strategies to stabilize the cotton planting area and enhance the income of cotton farmers.This paper presents an overview of intercropping systems and the benefits associated with cotton rotation and intercropping practices.Specifically,it discusses the"early maturing cotton-wheat"rotation system,the"cotton-watermelon"intercropping system,the"cotton-Dutch bean"intercropping system,and the"early maturing cotton-peanut-garlic"intercropping system.
文摘Rubber agroforestry systems positively impact soil microbial communities. This study employed a bibliometric approach to explore the research status, hotspots, and development trends related to these effects. Using CiteSpace software, we visually analyzed research literature from the Web of Science (WOS) core database, spanning 2004 to 2024. The focus was on the impact of rubber agroforestry ecosystems on soil microbial communities. The results indicate significant attention from Chinese researchers, who have published numerous influential papers in this field. Authors Liu Wenjie have contributed the most papers, although no stable core author group exists. The Chinese Academy of Sciences is the leading research institution in terms of publication volume. While there is close collaboration between different institutions and countries, the intensity of researcher cooperation is low. The most cited literature emphasizes soil nutrients and structure in rubber agroforestry, laying a foundation for soil microorganism studies. Most cited journals are from countries like Netherlands and the United Kingdom. Key research areas include the effects of rubber intercropping on soil microbial communities, agroforestry management, and soil health. Research development can be divided into three stages: the initial stage (2010-2015), the development stage (2015-2020), and the mature stage (2020-2024). Current studies show that rubber intercropping and rubber-based agroforestry systems enhance soil microbial communities, positively impacting soil health. This paper provides a theoretical basis for the sustainable development of rubber agroforestry systems and improved management plans. Future research could explore the effects of species composition on soil microbiological characteristics and develop methods for species interactions. An in-depth study of the soil microbial community’s structure and function, and its relationship with rubber trees, is crucial. Developing effective, rationally designed rubber agroforestry systems and underground soil microbiome technology will promote sustainability and improve plantation productivity.
文摘Before the advent of cheap, synthetic fertilizers, legumes were commonly used as green manure crops for their ability to fix atmospheric nitrogen (N). A three-year study at Overton, TX examined legume integration into high-biomass sorghum (Sorghum bicolor L.) production systems on a Lilbert loamy fine sand recently cultivated after a fertilized bermudagrass [Cynodon dactylon (L.) Pers.] pasture. In this split-split plot design, ‘Dixie’ crimson clover (Trifolium incarnatum L.) and ‘Iron and Clay’ cowpea (Vigna unguiculata L.) were integrated into a high-biomass sorghum production system to evaluate impacts on N concentration, C concentration, and yield of high-biomass sorghum and their impacts on soil total N and soil organic carbon (SOC). Main plots were split into crimson clover green manure (CLGM) and winter fallow (FALL) followed by three sub-plots split into warm-season crop rotations: cowpea green manure (CPGM), cowpea-sorghum intercrop (CPSR), and sorghum monocrop (SORG). Three N fertilizer treatments (0, 45, 90 kg N∙ha−1) were randomized and applied as sub-sub plots. The CLGM increased (P sorghum biomass yield (16.5 t DM∙ha−1) 28% in year three but had no effect in the first two years. The CPSR treatment reduced sorghum yield up to 62% compared to SORG;whereas CPGM increased sorghum yield 56% and 18% the two years following cowpea incorporation. Rate of N fertilizer had no effect on sorghum biomass yield. Decrease in SOC and soil N over time indicated mineralization of organic N and may explain why no N fertilizer response was observed in sorghum biomass yield. Cowpea showed strong potential as a green manure crop but proved to be too competitive for successful intercropping in high-biomass sorghum production systems.
文摘The study of Nitrogen fixation, uptake, and leaching at different soil depths in the co-cultivation of maize and soybean under phosphorus fertilization is important for sustainable agriculture. This study was conducted in Quzhou, Hebei Province, China, with MC812 maize and Jidou12 soybean varieties. Soil samples were taken from each plot to create a composite sample. The results show that nitrogen concentration varies at different depths and is higher in all treatments between 40 and 100 cm. Incorporating intercropping of maize and soybeans into farming practices can lead to more sustainable and environmentally friendly agriculture in China.
文摘Intercropping, particularly the combination of maize and soybeans, has been widely recognized for its potential to improve nitrogen uptake and promote sustainable agriculture. This study examines the patterns of nitrogen uptake in maize and soybean intercropping systems under different growth stages and phosphorus fertilization levels and investigates the influence of nitrogen uptake on growth parameters such as plant height, leaf area, and biomass accumulation in the maize/soybean intercrop under different phosphorus fertilization regimes. The study also collected chlorophyll samples at different growth stages of maize in monoculture and intercropping with maize or soybean. The results showed that plant height was greater in V10 in both fertilized and unfertilized treatments for intercropped maize and soybean, and chlorophyll concentration was higher in VT intercropped maize. The results also showed a higher accumulation of biomass. Understanding the growth dynamics of these plants in monoculture and intercropping systems and the impact of fertilization practices is crucial for optimizing crop productivity and sustainability in agricultural systems.
基金supported by the National Key Research and Development Program of China(2020YFD1000905)the Natural Science Foundation of Shandong Province,China(ZR2020MC094)。
文摘Cereal and legume intercropping has been widely adopted to increase crop productivity in sustainable farming systems worldwide.Among different intercropping combinations,millet and peanut intercropping can be adapted to most waterlimited areas.However,there are few studies on the differences in yield characteristics and nitrogen use efficiency between millet/peanut intercropping and monocultures under different nitrogen (N) application rates.The objective of this study was to determine the yield advantages and economic benefits,as well as the appropriate N application rate,of millet/peanut intercropping.A two-yearfield experiment was conducted with three cropping patterns (monoculture millet,monoculture peanut and millet/peanut intercropping) and four N rates (0,75,150 and 225 kg ha^(-1)).The results showed that the land equivalent ratio (LER) and net effect (NE) of the intercropping system reached their highest levels at the N input of 150 kg ha^(-1)in 2018 and 2019 (1.04 for LER,0.347 Mg ha^(-1)for NE,averaged across two years).Millet was the dominant crop in the intercropping system (aggressivity of millet and peanut (Amp)>0,competitive ratio of millet and peanut (CRmp)>1),and millet yields achieved their highest values at N inputs of 225 kg ha^(-1)for monoculture and 150 kg ha^(-1)for intercropping.NUE reached its highest levels with N inputs of 150 kg ha^(-1)for all planting patterns over the two years.Intercropping combined with an N input of 150 kg ha^(-1)achieved the highest net income of 2 791 USD ha^(-1),with a benefit-cost ratio of 1.56,averaged over the two years.From the perspective of economics and agricultural sustainable development,millet/peanut intercropping at 150 kg N ha^(-1)seems to be a promising alternative to millet or peanut monoculture.
文摘Wheat rust diseases are one of the major types of fungal diseases that cause substantial yield quality losses of 15%–20%every year.The wheat rust diseases are identified either through experienced evaluators or computerassisted techniques.The experienced evaluators take time to identify the disease which is highly laborious and too costly.If wheat rust diseases are predicted at the development stages,then fungicides are sprayed earlier which helps to increase wheat yield quality.To solve the experienced evaluator issues,a combined region extraction and cross-entropy support vector machine(CE-SVM)model is proposed for wheat rust disease identification.In the proposed system,a total of 2300 secondary source images were augmented through flipping,cropping,and rotation techniques.The augmented images are preprocessed by histogram equalization.As a result,preprocessed images have been applied to region extraction convolutional neural networks(RCNN);Fast-RCNN,Faster-RCNN,and Mask-RCNN models for wheat plant patch extraction.Different layers of region extraction models construct a feature vector that is later passed to the CE-SVM model.As a result,the Gaussian kernel function in CE-SVM achieves high F1-score(88.43%)and accuracy(93.60%)for wheat stripe rust disease classification.