研制了一种可用于H5亚型禽流感病毒快速检测的阻抗型免疫传感器。通过蛋白A将H5N1表面抗原血凝素(HA)的单克隆抗体固定于金叉指阵列微电极表面,并与待测溶液中的目标抗原H5N1进行免疫反应。在[Fe(CN)6]3"/4"溶液中进行电化学...研制了一种可用于H5亚型禽流感病毒快速检测的阻抗型免疫传感器。通过蛋白A将H5N1表面抗原血凝素(HA)的单克隆抗体固定于金叉指阵列微电极表面,并与待测溶液中的目标抗原H5N1进行免疫反应。在[Fe(CN)6]3"/4"溶液中进行电化学阻抗谱扫描,表征电极的表面修饰及抗原捕获过程。当H5N1病毒浓度在21~26 HA unit/50μL范围时,其浓度的对数值与叉指阵列微电极的电子传递阻抗的变化值呈线性关系,相关系数为0.9885;检出限为20 HA unit/50μL,检测时间为1 h。此传感器特异性好,灵敏度高,可以重复使用,在病原微生物快速检测领域具有良好的应用前景。展开更多
Rapid screening of foodborne pathogens is of great significance to ensure food safety.A microfluidic biosensor based on immunomagnetic separation,enzyme catalysis and electrochemical impedance analysis was developed f...Rapid screening of foodborne pathogens is of great significance to ensure food safety.A microfluidic biosensor based on immunomagnetic separation,enzyme catalysis and electrochemical impedance analysis was developed for rapid and sensitive detection of S.typhimurium.First,the bacterial sample,the magnetic nanoparticles(MNPs)modified with capture antibodies,and the enzymatic probes modified with detection antibodies and glucose oxidase(GOx)were simultaneously injected into the microfluidic chip,followed by mixing and incubation to form MNP-bacteria-probe sandwich complexes.Then,glucose with high impedance was injected into the chip and catalyzed by the GOx on the complexes into hydrogen peroxide with high impedance and gluconic acid with low impedance,which was finally measured using the low-cost interdigitated microelectrode and the electrochemical impedance analyzer to determine the target bacteria.Under the optimal conditions,this biosensor could quantitatively detect S.typhimurium at the concentrations from 1.6×10^(2) CFU/m L to 1.6×10^(6) CFU/m L in 1 h with the low detection limit of 73 CFU/m L.Besides,this biosensor was demonstrated with good feasibility for practical applications by detecting the S.typhimurium spiked chicken meat samples.展开更多
文摘研制了一种可用于H5亚型禽流感病毒快速检测的阻抗型免疫传感器。通过蛋白A将H5N1表面抗原血凝素(HA)的单克隆抗体固定于金叉指阵列微电极表面,并与待测溶液中的目标抗原H5N1进行免疫反应。在[Fe(CN)6]3"/4"溶液中进行电化学阻抗谱扫描,表征电极的表面修饰及抗原捕获过程。当H5N1病毒浓度在21~26 HA unit/50μL范围时,其浓度的对数值与叉指阵列微电极的电子传递阻抗的变化值呈线性关系,相关系数为0.9885;检出限为20 HA unit/50μL,检测时间为1 h。此传感器特异性好,灵敏度高,可以重复使用,在病原微生物快速检测领域具有良好的应用前景。
文摘Rapid screening of foodborne pathogens is of great significance to ensure food safety.A microfluidic biosensor based on immunomagnetic separation,enzyme catalysis and electrochemical impedance analysis was developed for rapid and sensitive detection of S.typhimurium.First,the bacterial sample,the magnetic nanoparticles(MNPs)modified with capture antibodies,and the enzymatic probes modified with detection antibodies and glucose oxidase(GOx)were simultaneously injected into the microfluidic chip,followed by mixing and incubation to form MNP-bacteria-probe sandwich complexes.Then,glucose with high impedance was injected into the chip and catalyzed by the GOx on the complexes into hydrogen peroxide with high impedance and gluconic acid with low impedance,which was finally measured using the low-cost interdigitated microelectrode and the electrochemical impedance analyzer to determine the target bacteria.Under the optimal conditions,this biosensor could quantitatively detect S.typhimurium at the concentrations from 1.6×10^(2) CFU/m L to 1.6×10^(6) CFU/m L in 1 h with the low detection limit of 73 CFU/m L.Besides,this biosensor was demonstrated with good feasibility for practical applications by detecting the S.typhimurium spiked chicken meat samples.