期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Study of Human Action Recognition Based on Improved Spatio-temporal Features 被引量:7
1
作者 Xiao-Fei Ji Qian-Qian Wu +1 位作者 Zhao-Jie Ju Yang-Yang Wang 《International Journal of Automation and computing》 EI CSCD 2014年第5期500-509,共10页
Most of the exist action recognition methods mainly utilize spatio-temporal descriptors of single interest point while ignoring their potential integral information, such as spatial distribution information. By combin... Most of the exist action recognition methods mainly utilize spatio-temporal descriptors of single interest point while ignoring their potential integral information, such as spatial distribution information. By combining local spatio-temporal feature and global positional distribution information(PDI) of interest points, a novel motion descriptor is proposed in this paper. The proposed method detects interest points by using an improved interest point detection method. Then, 3-dimensional scale-invariant feature transform(3D SIFT) descriptors are extracted for every interest point. In order to obtain a compact description and efficient computation, the principal component analysis(PCA) method is utilized twice on the 3D SIFT descriptors of single frame and multiple frames. Simultaneously, the PDI of the interest points are computed and combined with the above features. The combined features are quantified and selected and finally tested by using the support vector machine(SVM) recognition algorithm on the public KTH dataset. The testing results have showed that the recognition rate has been significantly improved and the proposed features can more accurately describe human motion with high adaptability to scenarios. 展开更多
关键词 Action recognition spatio-temporal interest points 3-dimensional scale-invariant feature transform (3D SIFT) positional distribution information dimension reduction
原文传递
Human behavior clustering for anomaly detection
2
作者 Xudong ZHU Zhijing LIU 《Frontiers of Materials Science》 SCIE CSCD 2011年第3期279-289,共11页
This paper aims to address the problem of modeling human behavior patterns captured in surveil- lance videos for the application of online normal behavior recognition and anomaly detection. A novel framework is develo... This paper aims to address the problem of modeling human behavior patterns captured in surveil- lance videos for the application of online normal behavior recognition and anomaly detection. A novel framework is developed for automatic behavior modeling and online anomaly detection without the need for manual labeling of the training data set. The framework consists of the following key components. 1) A compact and effective behavior representation method is developed based on spatial-temporal interest point detection. 2) The natural grouping of behavior patterns is determined through a novel clustering algorithm, topic hidden Markov model (THMM) built upon the existing hidden Markov model (HMM) and latent Dirichlet allocation (LDA), which overcomes the current limitations in accuracy, robustness, and computational efficiency. The new model is a four- level hierarchical Bayesian model, in which each video is modeled as a Markov chain of behavior patterns where each behavior pattern is a distribution over some segments of the video. Each of these segments in the video can be modeled as a mixture of actions where each action is a distribution over spatial-temporal words. 3) An online anomaly measure is introduced to detect abnormal behavior, whereas normal behavior is recognized by runtime accumulative visual evidence using the likelihood ratio test (LRT) method. Experimental results demonstrate the effectiveness and robustness of our approach using noisy and sparse data sets collected from a real surveillance scenario. 展开更多
关键词 computer vision unsupervised anomalydetection Bayesian topic models hidden Markov model(HMM) spatiotemporal interest points
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部