Wave driven unmanned surface vehicle(WUSV) is a new concept ocean robot drived by wave energy and solar energy,and it is very suitable for the vast ocean observations with incomparable endurance.Its dynamic modeling i...Wave driven unmanned surface vehicle(WUSV) is a new concept ocean robot drived by wave energy and solar energy,and it is very suitable for the vast ocean observations with incomparable endurance.Its dynamic modeling is very important because it is the theoretical foundation for further study in the WUSV motion control and efficiency analysis.In this work,the multibody system of WUSV was described based on D-H approach.Then,the driving principle was analyzed and the dynamic model of WUSV in longitudinal profile is established by Lagrangian mechanics.Finally,the motion simulation of WUSV and comparative analysis are completed by setting different inputs of sea state.Simulation results show that the WUSV dynamic model can correctly reflect the WUSV longitudinal motion process,and the results are consistent with the wave theory.展开更多
There are several software process models that have been proposed and are based on task involved in developing and maintaining software product. The large number of software projects not meeting their expectation in t...There are several software process models that have been proposed and are based on task involved in developing and maintaining software product. The large number of software projects not meeting their expectation in terms of functionality, cost, delivery schedule and effective project management appears to be lacking. In this paper, we present a new software fusion process model, which depicts the essential phases of a software project from initiate stage until the product is retired. Fusion is component based software process model, where each component implements a problem solving model. This approach reduces the risk associated with cost and time, as these risks will be limited to a component only and ensure the overall quality of software system by considering the changing requirements of customer, risk assessment, identification, evaluation and composition of relative concerns at each phase of development process.展开更多
基金Project(2012-Z05)supported by the State Key Laboratory of Robotics,ChinaProjects(61233013,51179183)supported by the National Natural Science Foundation of China
文摘Wave driven unmanned surface vehicle(WUSV) is a new concept ocean robot drived by wave energy and solar energy,and it is very suitable for the vast ocean observations with incomparable endurance.Its dynamic modeling is very important because it is the theoretical foundation for further study in the WUSV motion control and efficiency analysis.In this work,the multibody system of WUSV was described based on D-H approach.Then,the driving principle was analyzed and the dynamic model of WUSV in longitudinal profile is established by Lagrangian mechanics.Finally,the motion simulation of WUSV and comparative analysis are completed by setting different inputs of sea state.Simulation results show that the WUSV dynamic model can correctly reflect the WUSV longitudinal motion process,and the results are consistent with the wave theory.
文摘There are several software process models that have been proposed and are based on task involved in developing and maintaining software product. The large number of software projects not meeting their expectation in terms of functionality, cost, delivery schedule and effective project management appears to be lacking. In this paper, we present a new software fusion process model, which depicts the essential phases of a software project from initiate stage until the product is retired. Fusion is component based software process model, where each component implements a problem solving model. This approach reduces the risk associated with cost and time, as these risks will be limited to a component only and ensure the overall quality of software system by considering the changing requirements of customer, risk assessment, identification, evaluation and composition of relative concerns at each phase of development process.