期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
In-plane anisotropy in two-dimensional electron gas at LaAlO_3/SrTiO_3(110) interface
1
作者 沈胜春 洪彦鹏 +3 位作者 厉承剑 薛红霞 王欣欣 聂家财 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第7期361-366,共6页
A systematic study of the two-dimensional electron gas at La AlO_3/SrTiO_3(110) interface reveals an anisotropy along two specific directions, [001] and 1ī0. The anisotropy becomes distinct for the interface prepar... A systematic study of the two-dimensional electron gas at La AlO_3/SrTiO_3(110) interface reveals an anisotropy along two specific directions, [001] and 1ī0. The anisotropy becomes distinct for the interface prepared under high oxygen pressure with low carrier density. Angular dependence of magnetoresistance shows that the electron confinement is stronger along the 1ī0 direction. Gate-tunable magnetoresistance reveals a clear in-plane anisotropy of the spin–orbit coupling,and the spin relaxation mechanism along both directions belongs to D'yakonov–Perel'(DP) scenario. Moreover, in-plane anisotropic superconductivity is observed for the sample with high carrier density, the superconducting transition temperature is lower but the upper critical field is higher along the 1ī0 direction. This in-plane anisotropy could be ascribed to the anisotropic band structure along the two crystallographic directions. 展开更多
关键词 oxide interfaces two-dimensional electron gas anisotropy
下载PDF
Dendritic tip selection during solidification of alloys:Insights from phase-field simulations
2
作者 Qingjie Zhang Hui Xing +1 位作者 Lingjie Wang Wei Zhai 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期467-472,共6页
The effect of undercooling DT and the interface energy anisotropy parameter e4 on the shape of the equiaxed dendritic tip has been investigated by using a quantitative phase-field model for solidification of binary al... The effect of undercooling DT and the interface energy anisotropy parameter e4 on the shape of the equiaxed dendritic tip has been investigated by using a quantitative phase-field model for solidification of binary alloys.It was found that the tip radius r increases and the tip shape amplitude coefficient A4 decreases with the increase of the fitting range for all cases.The dendrite tip shape selection parameter sdecreases and then stabilizes with the increase of the fitting range,and sincreases with the increase of e4.The relationship between sand e4 follows a power-law function sµea 4,and a is independent of DT but dependent on the fitting range.Numerical results demonstrate that the predicted sis consistent with the curve of microscopic solvability theory(MST)for e4<0.02,and sobtained from our phase-field simulations is sensitive to the undercooling when e4 is fixed. 展开更多
关键词 phase-field simulations dendritic structure interface energy anisotropy tip shape selection parameter
下载PDF
Perpendicular magnetic anisotropy of Co_(85)Cr_(50)/Pt multilayers
3
作者 PolHwang BaoheLi +2 位作者 TaoYang ZhonghaiZhatt FengwuZhut 《Journal of University of Science and Technology Beijing》 CSCD 2004年第4期319-323,共5页
The CoCr/Pt bilayers and (CoCr/Pt)_(20) multilayers with Pt underlayer wereprepared by DC magnetron sputtering. The effects of prepared condition on perpendicular magneticanisotropy were investigated. The results show... The CoCr/Pt bilayers and (CoCr/Pt)_(20) multilayers with Pt underlayer wereprepared by DC magnetron sputtering. The effects of prepared condition on perpendicular magneticanisotropy were investigated. The results show that the thickness of Pt under-layer has a greateffect on the microstructure and perpendicular magnetic anisotropy of CoCr/Pt bilayers and(CoCr/Pt)_(20) multilayers. When the thickness of Pt underlayer increases, Pt(lll) and CoCr(002)peaks of both CoCr/Pt bilayers and (CoCr/Pt)_(20) multilayers increase and the bilayer periodicityof the multilayers is improved. The effective magnetic anisotropy of (CoCr/Pt)_(20) multilayers withPt underlayer was much larger than that of CoCr/Pt bilayers. The (CoCr/Pt)_(20) multilayers has astronger perpendicular magnetic anisotropy than that of CoCr/Pt bilayers. This is ascribed to theinterface magnetic anisotropy of the multilayers. 展开更多
关键词 MULTILAYERS perpendicular magnetic anisotropy effective magnetic anisotropyconstant interface magnetic anisotropy
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部