期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Characterization of Interface State Density of Ni/p-GaN Structures by Capacitance/Conductance-Voltage-Frequency Measurements 被引量:1
1
作者 Zhi-Fu Zhu He-Qiu Zhang +4 位作者 Hong-Wei Liang Xin-Cun Peng Ji-Jun Zou Bin Tang Guo-Tong Du 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第9期82-86,共5页
For the frequency range of I kHz-lOMHz, the interface state density of Ni contacts on p-GaN is studied using capacitance-voltage (C-V) and conductance-frequency-voltage (G-f-V) measurements at room temperature. To... For the frequency range of I kHz-lOMHz, the interface state density of Ni contacts on p-GaN is studied using capacitance-voltage (C-V) and conductance-frequency-voltage (G-f-V) measurements at room temperature. To obtain the real capacitance and interface state density of the Ni/p-GaN structures, the effects of the series resistance (Rs) on high-frequency (SMHz) capacitance values measured at a reverse and a forward bias are investigated. The mean interface state densities obtained from the CHF-CLF capacitance and the conductance method are 2 ×1012 e V-1 cm-2 and 0.94 × 1012 eV-1 cm-2, respectively. Furthermore, the interface state density derived from the conductance method is higher than that reported from the Ni/n-GaN in the literature, which is ascribed to a poor crystal quality and to a large defect density of the Mg-doped p-GaN. 展开更多
关键词 GaN Characterization of interface State Density of Ni/p-GaN Structures by capacitance/Conductance-Voltage-Frequency Measurements NI
下载PDF
A low-noise high-linearity interface ASIC for MEMS gyroscopes 被引量:4
2
作者 方然 鲁文高 +4 位作者 王冠男 陶婷婷 张雅聪 陈中建 于敦山 《Journal of Semiconductors》 EI CAS CSCD 2013年第12期109-114,共6页
This paper presents a continuous-time analog interface ASIC for use in MEMS gyroscopes. A charge sensitive amplifier with a chopper stabilization method is adopted to suppress the low-frequency noise. In order to canc... This paper presents a continuous-time analog interface ASIC for use in MEMS gyroscopes. A charge sensitive amplifier with a chopper stabilization method is adopted to suppress the low-frequency noise. In order to cancel the effect caused by the gyroscope capacitive mismatch, a mismatch auto-compensation circuit is imple- mented. The gain and phase shift of the drive closed loop is controlled separately by an auto gain controller and an adjustable phase shifter. The chip is fabricated in a 0.35 μm CMOS process. The test of the chip is performed with a vibratory gyroscope, and the measurement shows that the noise floor is 0.003°/s√Hz, and the measured drift stability is 43°/h. Within -300 to 300°/s of rotation rate input range, the non-linearity is less than 0.1%. 展开更多
关键词 capacitive interface circuit MEMS gyroscope low noise ASIC
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部