Ultrafast laser processing technology has offered a wide range of opportunities in micro/nano fabrication and other fields such as nanotechnology,biotechnology,energy science,and photonics due to its controllable proc...Ultrafast laser processing technology has offered a wide range of opportunities in micro/nano fabrication and other fields such as nanotechnology,biotechnology,energy science,and photonics due to its controllable processing precision,diverse processing capabilities,and broad material adaptability.The processing abilities and applications of the ultrafast laser still need more exploration.In the field of material processing,controlling the atomic scale structure in nanomaterials is challenging.Complex effects exist in ultrafast laser surface/interface processing,making it difficult to modulate the nanostructure and properties of the surface/interface as required.In the ultrafast laser fabrication of micro functional devices,the processing ability needs to be improved.Here,we review the research progress of ultrafast laser micro/nano fabrication in the areas of material processing,surface/interface controlling,and micro functional devices fabrication.Several useful ultrafast laser processing methods and applications in these areas are introduced.With various processing effects and abilities,the ultrafast laser processing technology has demonstrated application values in multiple fields from science to industry.展开更多
Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and...Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.展开更多
This paper describes the innovation schemes of the interface of a CNC machine which cannot communicate with a computer by a Direct Numerical Control(DNC)interface and the functions of a DNC interface system.One archit...This paper describes the innovation schemes of the interface of a CNC machine which cannot communicate with a computer by a Direct Numerical Control(DNC)interface and the functions of a DNC interface system.One architecture of hardware and software of a practi- cal single-chip computer based on DNC interface system developed by the authors is given. Without any change of the original hardware and software,this DNC interface system has been used to innovate the CNC machine's interface to implement the direct communication between a computer and a CNC machine and to achieve no tape transmission of a part program and ma- chine parameters.It has been demonstrated that this DNC interface system has certain practical values in improving the reliability,efficiency and production management of CNC/NC machine.展开更多
The electrocatalytic activity of transition-metal-based compounds is closely related to the electronic configuration.However,optimizing the surface electron spin state of catalysts remains a challenge.Here,we develope...The electrocatalytic activity of transition-metal-based compounds is closely related to the electronic configuration.However,optimizing the surface electron spin state of catalysts remains a challenge.Here,we developed a spin-state and delocalized electron regulation method to optimize oxygen evolution reaction(OER)performance by in-situ growth of NiCo_(2)(OH)_(x) using Oswald ripening and coordinating etching process on MXene and plasma treatment.X-ray absorption spectroscopy,magnetic tests and electron paramagnetic resonance reveal that the coupling of NiCo_(2)(OH)_(x) and MXene can induce remarkable spin-state transition of Co^(3+)and transition metal ions electron delocalization,plasma treatment further optimizes the 3 d orbital structure and delocalized electron density.The unique Jahn-Teller phenomenon can be brought by the intermediate spin state(t2 _(g)^(5) e_(g)^(1))of Co^(3+),which benefits from the partial electron occupied egorbitals.This distinct electron configuration(t2_(g)^(5) e_(g)^(1))with unpaired electrons leads to orbital degeneracy,that the adsorption free energy of intermediate species and conductivity were further optimized.The optimized electrocatalyst exhibits excellent OER activity with an overpotential of 268 m V at 10 m A cm^(-2).DFT calculations show that plasma treatment can effectively regulate the d-band center of TMs to optimize the adsorption and improve the OER activity.This approach could guide the rational design and discovery of electrocatalysts with ideal electron configurations in the future.展开更多
Refractory alloys such as tungsten and molybdenum based alloys with high strength,thermal/electrical conductivity,low coefficient of thermal expansion and excellent creep resistances are highly desirable for applicati...Refractory alloys such as tungsten and molybdenum based alloys with high strength,thermal/electrical conductivity,low coefficient of thermal expansion and excellent creep resistances are highly desirable for applications in nuclear facilities,critical components in aerospace and defense components.However,the serious embrittlement limits the engineering usability of some refractory alloys.A lot of research results indicate that the performances of refractory alloys are closely related to the physical/chemical status,such as the interface dimension,interface type,interface composition of their grain boundaries(GBs),phase boundaries(PBs)and other interface features.This paper reviewed the recent progress of simulations and experiments on interface design strategies that achieve high performance refractory alloys.These strategies include GB interface purifying/strengthening,PB interface strengthening and PB/GB synergistic strengthening.Great details are provided on the design/fabrication strategy such as GB interface controlling,PB interface controlling and synergistic control of multi-scaled interfaces.The corresponding performances such as the mechanical property,thermal conductivity,thermal load resistance,thermal stability,irradiation resistance,and oxidation resistance are reviewed in the aspect to the effect of interfaces.In addition,the relationships between these interfaces and material properties are discussed.Finally,future developments and potential new research directions for refractory alloys are proposed.展开更多
In order to improve the design and implementation quality of web service compositions,formal methods are used to model them and certain properties are verified.WCFA (web service interface control flow automata)is us...In order to improve the design and implementation quality of web service compositions,formal methods are used to model them and certain properties are verified.WCFA (web service interface control flow automata)is used to model web services,especially the control flow and possible interactions with other web services.A web service composition consists of a set of interacting WCFA.The global behavior of web service compositions is captured by NWA(nested word automata).A variation of the depth-first search algorithm is used to transform a set of WCFA into an NWA.State formulae and call stacks at each node of NWA are computed by a path-sensitive reachability analysis.Safety properties,call stack inspection properties and pre/post-conditions of service invocations are described by assertions.Then verification of these assertions is carried out by an automated SAT tool.展开更多
Aiming at the characteristics of modularity and reconfigurable in open architecture computer numerical control (CNC) system, the open architecture CNC system, Harbin Institute of Tech- nology computer numerical cont...Aiming at the characteristics of modularity and reconfigurable in open architecture computer numerical control (CNC) system, the open architecture CNC system, Harbin Institute of Tech- nology computer numerical control (HITCNC), is researched and manufactured based on the interface standards. The system's external interfaces are coincident with the corresponding international standards, and the internal interfaces follow the open modular architecture controller (OMAC) agreement. In the research and manufacturing process, object-oriented technology is used to ensure the openness of the HITCNC, and static programming is applied in the CNC system according to the idea of modularization disassembly. The HITCNC also actualizes real-time and unreal-time modules adopting real-time dynamical linked library (RTDLL) and component object model (COM). Finite state ma- chine (FSM) is adopted to do dynamically modeling of HITCNC. The complete separation between the software and the hardware is achieved in the HITCNC by applying the SoftSERCANS technique. The application of the above key techniques decreases the programming workload greatly, and uses software programs replacing hardware functions, which offers plenty technique ensures for the openness of HITCNC. Finally, based on the HITCNC, a three-dimensional milling system is established. On the system, series experiments are done to validate the expandability and interchangeability of HITCNC. The results of the experiments show that the established open architecture CNC system HITCNC is correct and feasible, and has good openness.展开更多
This paper described the structure and control of a new kind of miniature hexap od bio-robot, analyzed the moving principle of the robot. The robot is based on the principle of bionics, its structure is simple, design...This paper described the structure and control of a new kind of miniature hexap od bio-robot, analyzed the moving principle of the robot. The robot is based on the principle of bionics, its structure is simple, design novel, unique. It can mov e forwards and backwards. The external dimensions of bio-robot is: length 30 mm , width 40 mm, height 20 mm, weight 6.3 g. Some tests about the model robot were made. The experimental results show that the robot has good mobility.展开更多
This review summarizes the work carried out in the field of interface study in carbon nanotube reinforced aluminum (CNT/A1) composites. Much research work has been conducted to reveal the evolution of CNT/A1 interfa...This review summarizes the work carried out in the field of interface study in carbon nanotube reinforced aluminum (CNT/A1) composites. Much research work has been conducted to reveal the evolution of CNT/A1 interface in producing the composite with the purpose of achieving uniform distribution of CNTs and tight interfacial bonding. The effect and principles of coating were reviewed along with the illustration of "intermetallic interphases" design. Different roles of CNT/Al interface in structural and functional application were elucidated, and the future work that needs attention was addressed.展开更多
Realization of pure and stable ultraviolet electroluminescence(UV EL) of ZnO light-emitting diode(LED)is still a challenging issue, due to complicated defects of intrinsic ZnO and the corresponding device interfaces. ...Realization of pure and stable ultraviolet electroluminescence(UV EL) of ZnO light-emitting diode(LED)is still a challenging issue, due to complicated defects of intrinsic ZnO and the corresponding device interfaces. In this paper, we demonstrated a simple & feasible method to fabricate n-ZnO/AlN/p-GaN heterojunctions light-emitting devices. First, the vertically aligned ZnO nanorods(NRs) have been prepared as high quality active layer, and the nanostructured heterojunction LED arrays were constructed by directly bonding ZnO NRs onto AlN-coated p-GaN wafer. By optimizing the AlN layer thickness to be 20 nm, a strong and pure ultraviolet emission located at 387 nm can be observed. The energy band alignment of n-ZnO/AlN(20 nm)/p-Ga N heterojunction LED has been studied by using X-ray photoelectron spectroscopy(XPS), the valence band offset between AlN and GaN was calculated to be 0.34 eV. On the other side, the conduction band offset(as large as 3.28 eV) between Al N and ZnO can block the flow of electrons from ZnO top-GaN. Thus, electron-hole recombination takes place in the ZnO layer, and a pure UV EL could be observed. Our results provide a significant approach toward future of pure ultraviolet optoelectronic LEDs.展开更多
Interface engineering has gradually attracted substantial research interest in constructing active bifunctional catalysts toward urea electrolysis.The fundamental understanding of the crystallinity transition of the c...Interface engineering has gradually attracted substantial research interest in constructing active bifunctional catalysts toward urea electrolysis.The fundamental understanding of the crystallinity transition of the components on both sides of the interface is extremely significant for realizing controllable construction of catalysts through interface engineering,but it still remains a challenge.Herein,the Ni/NiO heterogenous nanoparticles are successfully fabricated on the porous N-doped carbon spheres by a facile hydrothermal and subsequent pyrolysis strategy.And for the first time we show the experimental observation that the Ni/NiO interface can be fine-tuned via simply tailoring the heating rate during pyrolysis process,in which the crystalline/amorphous or crystalline/crystalline Ni/NiO heterostructure is deliberately constructed on the porous N-doped carbon spheres(named as CA-Ni/NiO@NCS or CC-Ni/NiO@NCS,respectively).By taking advantage of the unique porous architecture and the synergistic effect between crystalline Ni and amorphous NiO,the well-designed CA-Ni/NiO@NCS displays more remarkable urea oxidation reaction(UOR)and hydrogen evolution reaction(HER)activity than its crystalline/crystalline counterpart of CC-Ni/NiO@NCS.Particularly,the whole assembled two-electrode electrolytic cell using the elaborate CANi/NiO@NCS both as the anode and cathode can realize the current density of 10 mA·cm^(−2)at a super low voltage of 1.475 V(264 mV less than that of pure water electrolysis),as well as remarkable prolonged stability over 63 h.Besides,the H_(2)evolution driven by an AA battery and a commercial solar cell is also studied to enlighten practical applications for the future.展开更多
This paper presents a hybrid brain-computer interface (BCI) control strategy,the goal of which is to expand control functions of a conventional motor imagery or a P300 potential based BCI in a virtual environment.The ...This paper presents a hybrid brain-computer interface (BCI) control strategy,the goal of which is to expand control functions of a conventional motor imagery or a P300 potential based BCI in a virtual environment.The hybrid control strategy utilizes P300 potential to control virtual devices and motor imagery related sensorimotor rhythms to navigate in the virtual world.The two electroencephalography (EEG) patterns serve as source signals for different control functions in their corresponding system states,and state switch is achieved in a sequential manner.In the current system,imagination of left/right hand movement was translated into turning left/right in the virtual apartment continuously,while P300 potentials were mapped to discrete virtual device control commands using a five-oddball paradigm.The combination of motor imagery and P300 patterns in one BCI system for virtual environment control was tested and the results were compared with those of a single motor imagery or P300-based BCI.Subjects obtained similar performances in the hybrid and single control tasks,which indicates the hybrid control strategy works well in the virtual environment.展开更多
The severe bulk recombination and sluggish oxygen evolution reaction(OER)dynamics of photoanodes severely restrict the application of photoelectrochemical(PEC)devices.To solve these two problems,crystallographic facet...The severe bulk recombination and sluggish oxygen evolution reaction(OER)dynamics of photoanodes severely restrict the application of photoelectrochemical(PEC)devices.To solve these two problems,crystallographic facet orientation and cocatalyst emergence with a high-quality photoanode/cocatalyst interface were realized through an air annealing-assisted strategy to treat atomic layer deposition(ALD)-modified SnSnanosheet arrays.Based on experimental observations and theoretical calculations,the reduced(001)crystal facet of SnSdecreases the recombination of photogenerated carriers in the bulk and improves the carrier separation of the photoanode.Moreover,the unexpectedly formed ZnTiOSfilm decreases the overpotential of the surface OER,reduces interface recombination,and extends the carrier lifetime.These synergistic effects lead to significantly enhanced PEC performance,with a high photocurrent density of 1.97 mA cm^(-2)at 1.23 V vs.reversible hydrogen electrode(RHE)and a low onset potential of 0.21 V vs.RHE,which are superior to reported mostly SnS-based photoanodes.展开更多
This paper presents the reaction torque based satellite base reactionless control or base disturbance minimization of a redundant free-floating space robot. This subject is of vital importance in the study of the free...This paper presents the reaction torque based satellite base reactionless control or base disturbance minimization of a redundant free-floating space robot. This subject is of vital importance in the study of the free-floating space robot because the base disturbance minimization will result in less energy consumption and prolonged control application. The analytical formulation of the reaction torque is derived in this article, and the reaction torque control can achieve reactionless control and satellite base disturbance minimization. Furthermore, we derive the reaction torque based control of the space robot for base disturbance minimization from both the non-strict task priority and strict task priority control strategy. The dynamics singularity in the proposed algorithm is avoided in this paper. Besides, a real time simulation system of the space robot under Linux/real time application interface(RTAI) is developed to verify and test the feasibility and reliability of the method. The experimental results demonstrate the feasibility of online reaction torque control of the redundant free-floating space robot.展开更多
基金supported by the National Natural Science Foundation of China(No.52075289)the Tsinghua-Jiangyin Innovation Special Fund(TJISF,No.2023JYTH0104).
文摘Ultrafast laser processing technology has offered a wide range of opportunities in micro/nano fabrication and other fields such as nanotechnology,biotechnology,energy science,and photonics due to its controllable processing precision,diverse processing capabilities,and broad material adaptability.The processing abilities and applications of the ultrafast laser still need more exploration.In the field of material processing,controlling the atomic scale structure in nanomaterials is challenging.Complex effects exist in ultrafast laser surface/interface processing,making it difficult to modulate the nanostructure and properties of the surface/interface as required.In the ultrafast laser fabrication of micro functional devices,the processing ability needs to be improved.Here,we review the research progress of ultrafast laser micro/nano fabrication in the areas of material processing,surface/interface controlling,and micro functional devices fabrication.Several useful ultrafast laser processing methods and applications in these areas are introduced.With various processing effects and abilities,the ultrafast laser processing technology has demonstrated application values in multiple fields from science to industry.
基金National Natural Science Foundation of China(32201491)Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University,Arar,KSA for funding this research work through the project number“NBU-FPEJ-2024-1101-02”.
文摘Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.
文摘This paper describes the innovation schemes of the interface of a CNC machine which cannot communicate with a computer by a Direct Numerical Control(DNC)interface and the functions of a DNC interface system.One architecture of hardware and software of a practi- cal single-chip computer based on DNC interface system developed by the authors is given. Without any change of the original hardware and software,this DNC interface system has been used to innovate the CNC machine's interface to implement the direct communication between a computer and a CNC machine and to achieve no tape transmission of a part program and ma- chine parameters.It has been demonstrated that this DNC interface system has certain practical values in improving the reliability,efficiency and production management of CNC/NC machine.
基金supported by the National Natural Science Foundation of China(21801090,21831003 and 21621001)the Jilin Scientific and Technological Development Program(20200802003GH)+2 种基金the Scientific Research Project in the Education Department of Jilin Province(JJKH20211044KJ)the Project on Experimental Technique of Jilin University(409020720202)supported by Users with the Excellence Program of Hefei Science Center CAS(2020HSC-UE002)。
文摘The electrocatalytic activity of transition-metal-based compounds is closely related to the electronic configuration.However,optimizing the surface electron spin state of catalysts remains a challenge.Here,we developed a spin-state and delocalized electron regulation method to optimize oxygen evolution reaction(OER)performance by in-situ growth of NiCo_(2)(OH)_(x) using Oswald ripening and coordinating etching process on MXene and plasma treatment.X-ray absorption spectroscopy,magnetic tests and electron paramagnetic resonance reveal that the coupling of NiCo_(2)(OH)_(x) and MXene can induce remarkable spin-state transition of Co^(3+)and transition metal ions electron delocalization,plasma treatment further optimizes the 3 d orbital structure and delocalized electron density.The unique Jahn-Teller phenomenon can be brought by the intermediate spin state(t2 _(g)^(5) e_(g)^(1))of Co^(3+),which benefits from the partial electron occupied egorbitals.This distinct electron configuration(t2_(g)^(5) e_(g)^(1))with unpaired electrons leads to orbital degeneracy,that the adsorption free energy of intermediate species and conductivity were further optimized.The optimized electrocatalyst exhibits excellent OER activity with an overpotential of 268 m V at 10 m A cm^(-2).DFT calculations show that plasma treatment can effectively regulate the d-band center of TMs to optimize the adsorption and improve the OER activity.This approach could guide the rational design and discovery of electrocatalysts with ideal electron configurations in the future.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.:51771184,11735015,51801203,51771181)the Natural Science Foundation of Anhui Province(Grant No.1808085QE132)+2 种基金the Open Project of State Key Laboratory of Environment friendly Energy Materials(18kfhg02)a fund from the Science and Technology on Surface Physics and Chemistry Laboratory(Grant No.JZX7Y201901SY00900103)the Innovation Center of Nuclear Materials for National Defense Industry。
文摘Refractory alloys such as tungsten and molybdenum based alloys with high strength,thermal/electrical conductivity,low coefficient of thermal expansion and excellent creep resistances are highly desirable for applications in nuclear facilities,critical components in aerospace and defense components.However,the serious embrittlement limits the engineering usability of some refractory alloys.A lot of research results indicate that the performances of refractory alloys are closely related to the physical/chemical status,such as the interface dimension,interface type,interface composition of their grain boundaries(GBs),phase boundaries(PBs)and other interface features.This paper reviewed the recent progress of simulations and experiments on interface design strategies that achieve high performance refractory alloys.These strategies include GB interface purifying/strengthening,PB interface strengthening and PB/GB synergistic strengthening.Great details are provided on the design/fabrication strategy such as GB interface controlling,PB interface controlling and synergistic control of multi-scaled interfaces.The corresponding performances such as the mechanical property,thermal conductivity,thermal load resistance,thermal stability,irradiation resistance,and oxidation resistance are reviewed in the aspect to the effect of interfaces.In addition,the relationships between these interfaces and material properties are discussed.Finally,future developments and potential new research directions for refractory alloys are proposed.
基金The National Key Technology R&D Program of Chinaduring the 11th Five-Year Plan Period(No.2006BAH02A12)the National High Technology Research and Development Program of China(863 Program)(No.2006AA010101)
文摘In order to improve the design and implementation quality of web service compositions,formal methods are used to model them and certain properties are verified.WCFA (web service interface control flow automata)is used to model web services,especially the control flow and possible interactions with other web services.A web service composition consists of a set of interacting WCFA.The global behavior of web service compositions is captured by NWA(nested word automata).A variation of the depth-first search algorithm is used to transform a set of WCFA into an NWA.State formulae and call stacks at each node of NWA are computed by a path-sensitive reachability analysis.Safety properties,call stack inspection properties and pre/post-conditions of service invocations are described by assertions.Then verification of these assertions is carried out by an automated SAT tool.
基金This project is supported by Provincial Science & Technology Projoct of Heilongjiang, China (No. GB05A501).
文摘Aiming at the characteristics of modularity and reconfigurable in open architecture computer numerical control (CNC) system, the open architecture CNC system, Harbin Institute of Tech- nology computer numerical control (HITCNC), is researched and manufactured based on the interface standards. The system's external interfaces are coincident with the corresponding international standards, and the internal interfaces follow the open modular architecture controller (OMAC) agreement. In the research and manufacturing process, object-oriented technology is used to ensure the openness of the HITCNC, and static programming is applied in the CNC system according to the idea of modularization disassembly. The HITCNC also actualizes real-time and unreal-time modules adopting real-time dynamical linked library (RTDLL) and component object model (COM). Finite state ma- chine (FSM) is adopted to do dynamically modeling of HITCNC. The complete separation between the software and the hardware is achieved in the HITCNC by applying the SoftSERCANS technique. The application of the above key techniques decreases the programming workload greatly, and uses software programs replacing hardware functions, which offers plenty technique ensures for the openness of HITCNC. Finally, based on the HITCNC, a three-dimensional milling system is established. On the system, series experiments are done to validate the expandability and interchangeability of HITCNC. The results of the experiments show that the established open architecture CNC system HITCNC is correct and feasible, and has good openness.
文摘This paper described the structure and control of a new kind of miniature hexap od bio-robot, analyzed the moving principle of the robot. The robot is based on the principle of bionics, its structure is simple, design novel, unique. It can mov e forwards and backwards. The external dimensions of bio-robot is: length 30 mm , width 40 mm, height 20 mm, weight 6.3 g. Some tests about the model robot were made. The experimental results show that the robot has good mobility.
基金financially supported by the National Basic Research Program of China (No.2012CB619600)the National Natural Science Foundation of China (Nos.51131004,51071100,and 51001071)+1 种基金the National High Technology Research and Development Program of China (No.2012AA030311)Shanghai Science & Technology Committee (Nos.11JC1405500)
文摘This review summarizes the work carried out in the field of interface study in carbon nanotube reinforced aluminum (CNT/A1) composites. Much research work has been conducted to reveal the evolution of CNT/A1 interface in producing the composite with the purpose of achieving uniform distribution of CNTs and tight interfacial bonding. The effect and principles of coating were reviewed along with the illustration of "intermetallic interphases" design. Different roles of CNT/Al interface in structural and functional application were elucidated, and the future work that needs attention was addressed.
基金supported by the National Natural Science Foundation of China(61475035,11734005)the Science and Technology Support Program of Jiangsu Province(BE2016177)the Collaborative Innovation Center of Suzhou Nano Science and Technology
文摘Realization of pure and stable ultraviolet electroluminescence(UV EL) of ZnO light-emitting diode(LED)is still a challenging issue, due to complicated defects of intrinsic ZnO and the corresponding device interfaces. In this paper, we demonstrated a simple & feasible method to fabricate n-ZnO/AlN/p-GaN heterojunctions light-emitting devices. First, the vertically aligned ZnO nanorods(NRs) have been prepared as high quality active layer, and the nanostructured heterojunction LED arrays were constructed by directly bonding ZnO NRs onto AlN-coated p-GaN wafer. By optimizing the AlN layer thickness to be 20 nm, a strong and pure ultraviolet emission located at 387 nm can be observed. The energy band alignment of n-ZnO/AlN(20 nm)/p-Ga N heterojunction LED has been studied by using X-ray photoelectron spectroscopy(XPS), the valence band offset between AlN and GaN was calculated to be 0.34 eV. On the other side, the conduction band offset(as large as 3.28 eV) between Al N and ZnO can block the flow of electrons from ZnO top-GaN. Thus, electron-hole recombination takes place in the ZnO layer, and a pure UV EL could be observed. Our results provide a significant approach toward future of pure ultraviolet optoelectronic LEDs.
基金the National Natural Science Foundation of China(No.21775142)the Natural Science Foundation of Shandong Province(No.ZR2020ZD10)the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia(project number 510).
文摘Interface engineering has gradually attracted substantial research interest in constructing active bifunctional catalysts toward urea electrolysis.The fundamental understanding of the crystallinity transition of the components on both sides of the interface is extremely significant for realizing controllable construction of catalysts through interface engineering,but it still remains a challenge.Herein,the Ni/NiO heterogenous nanoparticles are successfully fabricated on the porous N-doped carbon spheres by a facile hydrothermal and subsequent pyrolysis strategy.And for the first time we show the experimental observation that the Ni/NiO interface can be fine-tuned via simply tailoring the heating rate during pyrolysis process,in which the crystalline/amorphous or crystalline/crystalline Ni/NiO heterostructure is deliberately constructed on the porous N-doped carbon spheres(named as CA-Ni/NiO@NCS or CC-Ni/NiO@NCS,respectively).By taking advantage of the unique porous architecture and the synergistic effect between crystalline Ni and amorphous NiO,the well-designed CA-Ni/NiO@NCS displays more remarkable urea oxidation reaction(UOR)and hydrogen evolution reaction(HER)activity than its crystalline/crystalline counterpart of CC-Ni/NiO@NCS.Particularly,the whole assembled two-electrode electrolytic cell using the elaborate CANi/NiO@NCS both as the anode and cathode can realize the current density of 10 mA·cm^(−2)at a super low voltage of 1.475 V(264 mV less than that of pure water electrolysis),as well as remarkable prolonged stability over 63 h.Besides,the H_(2)evolution driven by an AA battery and a commercial solar cell is also studied to enlighten practical applications for the future.
基金supported by the National Natural Science Foundation of China (Nos.30800287,60703038,60873125,61001172,and 61031002)the Zhejiang Provincial Natural Science Foundation of China (No.Y2090707)the Fundamental Research Funds for the Central Universities of China
文摘This paper presents a hybrid brain-computer interface (BCI) control strategy,the goal of which is to expand control functions of a conventional motor imagery or a P300 potential based BCI in a virtual environment.The hybrid control strategy utilizes P300 potential to control virtual devices and motor imagery related sensorimotor rhythms to navigate in the virtual world.The two electroencephalography (EEG) patterns serve as source signals for different control functions in their corresponding system states,and state switch is achieved in a sequential manner.In the current system,imagination of left/right hand movement was translated into turning left/right in the virtual apartment continuously,while P300 potentials were mapped to discrete virtual device control commands using a five-oddball paradigm.The combination of motor imagery and P300 patterns in one BCI system for virtual environment control was tested and the results were compared with those of a single motor imagery or P300-based BCI.Subjects obtained similar performances in the hybrid and single control tasks,which indicates the hybrid control strategy works well in the virtual environment.
基金support from the National Key Research and Development Program of China(2021YFA1500800)the National Natural Science Foundation of China(52025028)+1 种基金the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutionssupport of the National Natural Science Foundation of China(21973006)。
文摘The severe bulk recombination and sluggish oxygen evolution reaction(OER)dynamics of photoanodes severely restrict the application of photoelectrochemical(PEC)devices.To solve these two problems,crystallographic facet orientation and cocatalyst emergence with a high-quality photoanode/cocatalyst interface were realized through an air annealing-assisted strategy to treat atomic layer deposition(ALD)-modified SnSnanosheet arrays.Based on experimental observations and theoretical calculations,the reduced(001)crystal facet of SnSdecreases the recombination of photogenerated carriers in the bulk and improves the carrier separation of the photoanode.Moreover,the unexpectedly formed ZnTiOSfilm decreases the overpotential of the surface OER,reduces interface recombination,and extends the carrier lifetime.These synergistic effects lead to significantly enhanced PEC performance,with a high photocurrent density of 1.97 mA cm^(-2)at 1.23 V vs.reversible hydrogen electrode(RHE)and a low onset potential of 0.21 V vs.RHE,which are superior to reported mostly SnS-based photoanodes.
基金supported by National Basic Research Program of China(973 Program)(No.2013CB733103)Program for New Century Excellent Talents in University(No.NCET-10-0058)
文摘This paper presents the reaction torque based satellite base reactionless control or base disturbance minimization of a redundant free-floating space robot. This subject is of vital importance in the study of the free-floating space robot because the base disturbance minimization will result in less energy consumption and prolonged control application. The analytical formulation of the reaction torque is derived in this article, and the reaction torque control can achieve reactionless control and satellite base disturbance minimization. Furthermore, we derive the reaction torque based control of the space robot for base disturbance minimization from both the non-strict task priority and strict task priority control strategy. The dynamics singularity in the proposed algorithm is avoided in this paper. Besides, a real time simulation system of the space robot under Linux/real time application interface(RTAI) is developed to verify and test the feasibility and reliability of the method. The experimental results demonstrate the feasibility of online reaction torque control of the redundant free-floating space robot.