The amorphous CoZrNb films were deposited by DC magnetron sputtering.The depth distributions of the elements were analyzed by Rutherford backscattering spectrometry(RBS).The results indicate that when the deposition t...The amorphous CoZrNb films were deposited by DC magnetron sputtering.The depth distributions of the elements were analyzed by Rutherford backscattering spectrometry(RBS).The results indicate that when the deposition time is longer than 37 min,the film composition keeps constant along the depth.When the deposition time is longer than 45 min,the Co concentration at the interface of the silicon substrate is higher than the average value in the whole film.When the deposition time is longer than 52 min,the Co atoms diffuse into the substrate during the deposition.According to the Co composition profile in the substrate,which were determined from the RBS spectra,the Co diffusion coefficients in the substrate were calculated using the solution of Fick′s second law corresponding to an infinite source with a constant diffusion coefficient.The calculated diffusion coefficients indicate an interstitial assisted diffusion mechanism.展开更多
The interface diffusion and chemical reaction between a PZT (PbZrxTi1-xO3) layer and a Si(111) substrate during the annealing treatment in air have been studied by using XPS (X-Ray Photoelectron Spectroscopy) and AES ...The interface diffusion and chemical reaction between a PZT (PbZrxTi1-xO3) layer and a Si(111) substrate during the annealing treatment in air have been studied by using XPS (X-Ray Photoelectron Spectroscopy) and AES (Auger Electron Spectroscopy). The results indicate that the Ti element in the PZT precursor reacted with residual carbon and silicon, diffused from the Si substrate, to form TiCx, TiSix species in the PZT layer during the thermal treatment. A great interface diffusion and chemical reaction took place on the interface of PZT/Si also. The silicon atoms diffused from silicon substrate onto the surface of PZT layer. The oxygen atoms, which came from air, diffused into silicon substrate also and reacted with Si atoms to form a SiO2 interlayer between the PZT layer and the Si (111) substrate. The thickness of SiO2, interlayer was proportional to the square root of treatment time. The formation of the SiO2 interlayer was governed by the diffusion of oxygen in the PZT layer at low annealing temperature, and governed by the diffusion of oxygen in SiO2 interlayer at high annealing temperature. The apparent activation energy of the interface oxidation reaction was about 39.1 kJ/mol.展开更多
SiCp/2014Al composites were bonded with the vacuum diffusion welding technique using Ni as the interlayer metal. Ni and Al were interdiffused and there were intermetallic compounds formed in the inter transition layer...SiCp/2014Al composites were bonded with the vacuum diffusion welding technique using Ni as the interlayer metal. Ni and Al were interdiffused and there were intermetallic compounds formed in the inter transition layer, which was composed of Ni3Al//NiAl//NiAl3. The relation between the diffusion distance and the element concentration was calculated according to Fick's second law. The relations of the diffusion concentration and the diffusion welding technique parameters were calculated.展开更多
The mechanism of ultrasonic wire wedge bonding, one of the die/chip interconnection methods, was investigated based on the characteristics of the ultrasonic wire bonding joints. The Al-1%Si wire of 25 μm in diameter ...The mechanism of ultrasonic wire wedge bonding, one of the die/chip interconnection methods, was investigated based on the characteristics of the ultrasonic wire bonding joints. The Al-1%Si wire of 25 μm in diameter was bonded on Au/Ni/Cu pad and the joint cross-section was analyzed by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The results indicated that it is irregular for the ultrasonic bond formation, non-welded at the centre but joining well at the periphery, especially at the heel and toe of the joint. Furthermore, the diffusion and/or reaction at the cross-section interface are not clear at C-zone, while there exists a strip layer microstructure at P-zone, and the composition is 78.96 at. pct Al and 14.88 at. pct Ni, close to the Al3Ni intermetallic compound. All these observations are tentatively ascribed to the plastic flow enhanced by ultrasonic vibration and repeated cold deformation driving interdiffusion between AI and Ni at bond interface.展开更多
An orthogonal experiment scheme was designed to investigate the effects of the Cu content,compaction pressure,and sintering temperature on the microstructures and mechanical and thermal properties of(30−50)wt.%Cu/Inva...An orthogonal experiment scheme was designed to investigate the effects of the Cu content,compaction pressure,and sintering temperature on the microstructures and mechanical and thermal properties of(30−50)wt.%Cu/Invar bi-metal matrix composites fabricated via spark plasma sintering(SPS).The results indicated that as the Cu content increased from 30 to 50 wt.%,a continuous Cu network gradually appeared,and the density,thermal conductivity(TC)and coefficient of thermal expansion of the composites noticeably increased,but the tensile strength decreased.The increase in the sintering temperature promoted the Cu/Invar interface diffusion,leading to a reduction in the TC but an enhancement in the tensile strength of the composites.The compaction pressure comprehensively affected the thermal properties of the composites.The 50wt.%Cu/Invar composite sintered at 700℃ and 60 MPa had the highest TC(90.7 W/(m·K)),which was significantly higher than the TCs obtained for most of the previously reported Cu/Invar composites.展开更多
Seawater intrusion caused by groundwater over-exploitation from coastal aquifers poses a severe problem in many regions. Formulation of proper pumping strategy using a simulation model can assure sustainable supply of...Seawater intrusion caused by groundwater over-exploitation from coastal aquifers poses a severe problem in many regions. Formulation of proper pumping strategy using a simulation model can assure sustainable supply of fresh water from the coastal aquifers. The focus of the present study is on the development of a numerical model based on Meshfree (MFree) method to study the seawater intrusion problem. For the simulation of seawater intrusion problem, widely used models are based on Finite Difference (FDM) and Finite Element (FEM) Methods, which demand well defined grids/meshes and considerable pre-processing efforts. Here, MFree Point Collocation Method (PCM) based on the Radial Basis Function (RBF) is proposed for the simulation. Diffusive interface approach with density-dependent dispersion and solution of flow and solute transport is adopted. These equations are solved using PCM with appropriate boundary conditions. The developed model has been verified with Henry’s problem, and found to be satisfactory. Further the model has been applied to another established problem and an attempt is made to examine the influence of important system parameters including pumping and recharge on the seawater intrusion. The PCM based MFree model is found computationally efficient as preprocessing is avoided when compared to other numerical methods.展开更多
A solute trapping model is developed based on a so-called solute drag treatment.By adopting a basic approach of phase-field models,and defining the free energy density in the interfacial region,a suitable interface sh...A solute trapping model is developed based on a so-called solute drag treatment.By adopting a basic approach of phase-field models,and defining the free energy density in the interfacial region,a suitable interface shape function is introduced to derive the current model,in which the equilibrium and non-equilibrium interface behaviours can be described using a dimensionless parameter L (i.e.an important parameter in the present interface shape function).When applying the current model to Si-9%As (molar fraction) alloy with L=0.5,a good prediction of the steeper profile for high interface velocity,which is analogous to that using a phase-field model of DANILOV and NESLTER,has been obtained.展开更多
All the quantitative phase field models try to get rid of the artificial factors of solutal drag, interface diffusion and interface stretch in the diffuse interface. These artificial non-equilibrium effects due to the...All the quantitative phase field models try to get rid of the artificial factors of solutal drag, interface diffusion and interface stretch in the diffuse interface. These artificial non-equilibrium effects due to the introducing of diffuse interface are analysed based on the thermodynamic status across the diffuse interface in the quantitative phase field model of binary alloys. Results indicate that the non-equilibrium effects are related to the negative driving force in the local region of solid side across the diffuse interface. The negative driving force results from the fact that the phase field model is derived from equilibrium condition but used to simulate the non-equilibrium solidification process. The interface thickness dependence of the non-equilibrium effects and its restriction on the large scale simulation are also discussed.展开更多
Theoretical model for non -equilibrium solidification is constructed with consideration of diffuse interface and multiphase fluctuation. It can he degenerated to Aziz continuous growth model in the case of mono-atomic...Theoretical model for non -equilibrium solidification is constructed with consideration of diffuse interface and multiphase fluctuation. It can he degenerated to Aziz continuous growth model in the case of mono-atomic approximation. for large undercooling, the change of heat capacity should not he neglected and it usually gives an increase in the interface partition coefficient. Solute trapping may happen at a rather slow growth rate compared with that predicted by other models, because the undercooling and structural relaxation ahead of the S/ L interface lowers the interfacial diffusivity to a great extent. Plase fluctuation has two contending effects, decrease in energy barrier and increase in atomic dragging, therefore exerts dual influences on the partition coefficient.展开更多
In this work,we proposed a diffuse-interface model for the dendritic growth with thermosolutal convection.In this model,the sharp boundary between the fluid and solid dendrite is firstly replaced by a thin but nonzero...In this work,we proposed a diffuse-interface model for the dendritic growth with thermosolutal convection.In this model,the sharp boundary between the fluid and solid dendrite is firstly replaced by a thin but nonzero thickness diffuse interface,which is described by the order parameter,and the diffuse-interface based governing equations for the dendritic growth are presented.To solve the model for the dendritic growth with thermosolutal convection,we also developed a diffuse-interface multirelaxation-time lattice Boltzmann(LB)method.In this method,the order parameter in the phase-field equation is combined into the force caused by the fluid-solid interaction,and the treatment on the complex fluid-solid interface can be avoided.In addition,four LB models are designed for the phase-field equation,concentration equation,temperature equation and the Navier-Stokes equations in a unified framework.Finally,we performed some simulations of the dendritic growth to test the present diffuse-interface LB method,and found that the numerical results are in good agreements with some previous works.展开更多
A compressible lattice Boltzmann-finite difference method is extended by the phase-field approach into a monolithic scheme to study fluid flow and heat transfer through regular arrangements of solid bodies of circular...A compressible lattice Boltzmann-finite difference method is extended by the phase-field approach into a monolithic scheme to study fluid flow and heat transfer through regular arrangements of solid bodies of circular,elliptical and irregular shapes.The advantage of using the phase-field method is demon-strated both in its simplicity of accounting for flow and thermal boundary conditions at solid surfaces with irregular shapes and in the capability of generating such complex-shaped objects.For an array of discs,numerical results for the overall solid-to-gas heat transfer rate are validated via experiments on flow through arrays of hot cylinders.The thus validated compressible LB-FD-PF hybrid scheme is used to study the dependence of heat transfer on flow and thermal boundary conditions(Reynolds number,temperature difference between the hot solid bodies and the inlet gas),porosity as well as on the shape of solid objects.Results are rationalized in terms of the residence time of the gas close to the solid body and downstream variations of gas velocity and temperature.Perspective for further applications of the proposed methodology are also discussed.展开更多
In this paper,we consider the global spherically symmetric solutions for the initial boundary value problem of a coupled compressible Navier–Stokes/Allen–Cahn system which describes the motion of two-phase viscous c...In this paper,we consider the global spherically symmetric solutions for the initial boundary value problem of a coupled compressible Navier–Stokes/Allen–Cahn system which describes the motion of two-phase viscous compressible fluids.We prove the existence and uniqueness of global classical solution,weak solution and strong solution under the assumption of spherically symmetry condition for initial dataρ0 without vacuum state.展开更多
electrolyte. The properties of lithium-ion (Li-ion) battery, such as cycle life, irreversible capacity loss, self-discharge rate, electrode corrosion and safety are usually ascribed to the quality of the SEI, which ar...electrolyte. The properties of lithium-ion (Li-ion) battery, such as cycle life, irreversible capacity loss, self-discharge rate, electrode corrosion and safety are usually ascribed to the quality of the SEI, which are highly dependent on the thickness. Thus, understanding the formation mechanism and the SEI thickness is of prime interest. First, we apply dimensional analysis to obtain an explicit relation between the thickness and the number density in this study. Then the SEI thickness in the initial charge-discharge cycle is analyzed and estimated for the first time using the Cahn-Hilliard phase-field model. In addition, the SEI thickness by molecular dynamics simulation validates the theoretical results. It has been shown that the established model and the simulation in this paper estimate the SEI thickness concisely within order-of-magnitude of nanometers. Our results may help in evaluating the performance of SEI and assist the future design of Li-ion battery.展开更多
In this paper, we present two second-order numerical schemes to solve the fourth order parabolic equation derived from a diffuse interface model with Peng-Robinson Equation of state (EOS) for pure substance. The mas...In this paper, we present two second-order numerical schemes to solve the fourth order parabolic equation derived from a diffuse interface model with Peng-Robinson Equation of state (EOS) for pure substance. The mass conservation, energy decay property, unique solvability and L~ convergence of these two schemes are proved. Numerical results demon- strate the good approximation of the fourth order equation and confirm reliability of these two schemes.展开更多
In this paper, we investigate flows with moving contact lines on curved solid walls on a dual-resolution grid using a diffuse-interface immersed-boundary(DIIB) method. The dual-resolution grid, on which the flows ar...In this paper, we investigate flows with moving contact lines on curved solid walls on a dual-resolution grid using a diffuse-interface immersed-boundary(DIIB) method. The dual-resolution grid, on which the flows are solved on a coarse mesh while the interface is resolved on a fine mesh, was shown to significantly improve the computational efficiency when simulating multiphase flows. On the other hand, the DIIB method is able to resolve dynamic wetting on curved substrates on a Cartesian grid, but it usually requires a mesh of high resolution in the vicinity of a moving contact line to resolve the local flow. In the present study, we couple the DIIB method with the dual-resolution grid, to improve the interface resolution for flows with moving contact lines on curved solid walls at an affordable cost. The dynamic behavior of moving contact lines is validated by studying drop spreading, and the numerical results suggest that the effective slip length λ_n can be approximated by 1.9Cn, where Cn is a dimensionless measure of the thickness of the diffuse interface. We also apply the method to drop impact onto a convex substrate, and the results on the dual-resolution grid are in good agreement with those on a single-resolution grid. It shows that the axisymmetric simulations using the DIIB method on the dual-resolution grid saves nearly 60% of the computational time compared with that on a single-resolution grid.展开更多
We propose a hybrid scheme combing the level set method and the multicomponent diffuse interface method to simulate complex multi-phase flows.The overall numerical scheme is based on a sharp interface framework where ...We propose a hybrid scheme combing the level set method and the multicomponent diffuse interface method to simulate complex multi-phase flows.The overall numerical scheme is based on a sharp interface framework where the level set method is adopted to capture the material interface,the Euler equation is used to describe a single-phase flow on one side of the interface and the six-equation diffuse interface model is applied to model the multi-phase mixture or gas-liquid cavitation on the other side.An exact Riemann solver,between the Euler equation and the six-equation model with highly nonlinear Mie-Gr¨uneisen equations of state,is developed to predict the interfacial states and compute the phase interface flux.Several numerical examples,including shock tube problems,cavitation problems,air blast and underwater explosion applications are presented to validate the numerical scheme and the Riemann solver.展开更多
We propose a hybrid scheme combing the diffuse interface method and the material point method to simulate the complex interactions between the multiphase compressible flow and elastoplastic solid.The multiphase flow i...We propose a hybrid scheme combing the diffuse interface method and the material point method to simulate the complex interactions between the multiphase compressible flow and elastoplastic solid.The multiphase flow is modelled by the multi-component model and solved using a generalized Godunov method in the Eulerian grids,while the elastoplastic solid is solved by the classical material point method in a combination of Lagrangian particles and Eulerian background grids.In order to facilitate the simulation of fluid-solid interactions,the solid variables are further interpolated to the cell center and coexist with the fluid in the same cell.An instantaneous relaxation procedure of velocity and pressure is adopted to simulate the momentum and energy transfers between various materials,and to keep the system within a tightly coupled interaction.Several numerical examples,including shock tube problem,gasbubble problem,air blast,underwater explosion and high speed impact applications are presented to validate the numerical scheme.展开更多
Free energy lattice Boltzmann methods are well suited for the simulation of two phase flow problems.The model for the interface is based on well understood physical grounds.In most cases a numerical interface is used ...Free energy lattice Boltzmann methods are well suited for the simulation of two phase flow problems.The model for the interface is based on well understood physical grounds.In most cases a numerical interface is used instead of the physical one because of lattice resolution limitations.In this paper we present a framework where we can both follow the droplet behavior in a coarse scale and solve the interface in a fine scale simultaneously.We apply the method for the simulation of a droplet using an interface to diameter size ratio of 1 to 280.In a second simulation,a small droplet coalesces with a 42 times larger droplet producing on it only a small capillary wave that propagates and dissipates.展开更多
We consider the finite element based computation of topological quantities of implicitly represented surfaces within a diffuse interface framework.Utilizing an adaptive finite element implementation with effective gra...We consider the finite element based computation of topological quantities of implicitly represented surfaces within a diffuse interface framework.Utilizing an adaptive finite element implementation with effective gradient recovery techniques,we discuss how the Euler number can be accurately computed directly from the numerically solved phase field functions or order parameters.Numerical examples and applications to the topological analysis of point clouds are also presented.展开更多
The diffusion behavior and reactions between AI and Ca in Mg alloys by diffusion couple method were investigated. Results demonstrate that Al2Ca is the only phase existing in the diffusion reaction layers. The volume ...The diffusion behavior and reactions between AI and Ca in Mg alloys by diffusion couple method were investigated. Results demonstrate that Al2Ca is the only phase existing in the diffusion reaction layers. The volume fraction of Al2Ca in diffusion reaction layers increases linearly with temperature. The standard enthalpy of formation for intermetallic compounds was rationalized on the basis of the Miedema model. Al-Ca intermetallic compounds were preferable to form in the Mg-Al-Ca ternary system under the same conditions. Over the range of 350-400℃, the structure of Al2Ca is more stable than that of Al4Ca, Al14Ca13and Al3Ca8, The growth constants of the layer I, layer II and entire diffusion reaction layers were determined. The activation energies for the growth of the layer I, layer II and entire diffusion reaction layers were (80.74 ± 3.01 ) kJ/mol, (93.45 ±2.12) kJ/mol and (83.52 ±1.50) kJ/mot, respectively. In layer I and II, AI has higher integrated interdiffusion coefficients D^i^Int,layer layer than Ca. The average effective interdiffusion coefficients D^Al^eff values are higher than D^Ca^eff in the layer I and II.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(No.10405013and No.50325105).
文摘The amorphous CoZrNb films were deposited by DC magnetron sputtering.The depth distributions of the elements were analyzed by Rutherford backscattering spectrometry(RBS).The results indicate that when the deposition time is longer than 37 min,the film composition keeps constant along the depth.When the deposition time is longer than 45 min,the Co concentration at the interface of the silicon substrate is higher than the average value in the whole film.When the deposition time is longer than 52 min,the Co atoms diffuse into the substrate during the deposition.According to the Co composition profile in the substrate,which were determined from the RBS spectra,the Co diffusion coefficients in the substrate were calculated using the solution of Fick′s second law corresponding to an infinite source with a constant diffusion coefficient.The calculated diffusion coefficients indicate an interstitial assisted diffusion mechanism.
基金Project supported by the Grant-in Aid for Scientific Fundament Research of Tsinghua University and by State Key Laboratory of Rare Earth Materials Chemistry and Application.
文摘The interface diffusion and chemical reaction between a PZT (PbZrxTi1-xO3) layer and a Si(111) substrate during the annealing treatment in air have been studied by using XPS (X-Ray Photoelectron Spectroscopy) and AES (Auger Electron Spectroscopy). The results indicate that the Ti element in the PZT precursor reacted with residual carbon and silicon, diffused from the Si substrate, to form TiCx, TiSix species in the PZT layer during the thermal treatment. A great interface diffusion and chemical reaction took place on the interface of PZT/Si also. The silicon atoms diffused from silicon substrate onto the surface of PZT layer. The oxygen atoms, which came from air, diffused into silicon substrate also and reacted with Si atoms to form a SiO2 interlayer between the PZT layer and the Si (111) substrate. The thickness of SiO2, interlayer was proportional to the square root of treatment time. The formation of the SiO2 interlayer was governed by the diffusion of oxygen in the PZT layer at low annealing temperature, and governed by the diffusion of oxygen in SiO2 interlayer at high annealing temperature. The apparent activation energy of the interface oxidation reaction was about 39.1 kJ/mol.
文摘SiCp/2014Al composites were bonded with the vacuum diffusion welding technique using Ni as the interlayer metal. Ni and Al were interdiffused and there were intermetallic compounds formed in the inter transition layer, which was composed of Ni3Al//NiAl//NiAl3. The relation between the diffusion distance and the element concentration was calculated according to Fick's second law. The relations of the diffusion concentration and the diffusion welding technique parameters were calculated.
文摘The mechanism of ultrasonic wire wedge bonding, one of the die/chip interconnection methods, was investigated based on the characteristics of the ultrasonic wire bonding joints. The Al-1%Si wire of 25 μm in diameter was bonded on Au/Ni/Cu pad and the joint cross-section was analyzed by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The results indicated that it is irregular for the ultrasonic bond formation, non-welded at the centre but joining well at the periphery, especially at the heel and toe of the joint. Furthermore, the diffusion and/or reaction at the cross-section interface are not clear at C-zone, while there exists a strip layer microstructure at P-zone, and the composition is 78.96 at. pct Al and 14.88 at. pct Ni, close to the Al3Ni intermetallic compound. All these observations are tentatively ascribed to the plastic flow enhanced by ultrasonic vibration and repeated cold deformation driving interdiffusion between AI and Ni at bond interface.
基金the International Science&Technology Cooperation Program of China(No.2014DFA50860).
文摘An orthogonal experiment scheme was designed to investigate the effects of the Cu content,compaction pressure,and sintering temperature on the microstructures and mechanical and thermal properties of(30−50)wt.%Cu/Invar bi-metal matrix composites fabricated via spark plasma sintering(SPS).The results indicated that as the Cu content increased from 30 to 50 wt.%,a continuous Cu network gradually appeared,and the density,thermal conductivity(TC)and coefficient of thermal expansion of the composites noticeably increased,but the tensile strength decreased.The increase in the sintering temperature promoted the Cu/Invar interface diffusion,leading to a reduction in the TC but an enhancement in the tensile strength of the composites.The compaction pressure comprehensively affected the thermal properties of the composites.The 50wt.%Cu/Invar composite sintered at 700℃ and 60 MPa had the highest TC(90.7 W/(m·K)),which was significantly higher than the TCs obtained for most of the previously reported Cu/Invar composites.
文摘Seawater intrusion caused by groundwater over-exploitation from coastal aquifers poses a severe problem in many regions. Formulation of proper pumping strategy using a simulation model can assure sustainable supply of fresh water from the coastal aquifers. The focus of the present study is on the development of a numerical model based on Meshfree (MFree) method to study the seawater intrusion problem. For the simulation of seawater intrusion problem, widely used models are based on Finite Difference (FDM) and Finite Element (FEM) Methods, which demand well defined grids/meshes and considerable pre-processing efforts. Here, MFree Point Collocation Method (PCM) based on the Radial Basis Function (RBF) is proposed for the simulation. Diffusive interface approach with density-dependent dispersion and solution of flow and solute transport is adopted. These equations are solved using PCM with appropriate boundary conditions. The developed model has been verified with Henry’s problem, and found to be satisfactory. Further the model has been applied to another established problem and an attempt is made to examine the influence of important system parameters including pumping and recharge on the seawater intrusion. The PCM based MFree model is found computationally efficient as preprocessing is avoided when compared to other numerical methods.
基金Projects(50501020, 50395103, 50431030) supported by the National Natural Science Foundation of China Project(NCET-05-870) supported by Program for New Century Excellent Talents in University of China Project(CX200706) supported by the Doctorate Foundation of Northwestern Polytechnical University,China
文摘A solute trapping model is developed based on a so-called solute drag treatment.By adopting a basic approach of phase-field models,and defining the free energy density in the interfacial region,a suitable interface shape function is introduced to derive the current model,in which the equilibrium and non-equilibrium interface behaviours can be described using a dimensionless parameter L (i.e.an important parameter in the present interface shape function).When applying the current model to Si-9%As (molar fraction) alloy with L=0.5,a good prediction of the steeper profile for high interface velocity,which is analogous to that using a phase-field model of DANILOV and NESLTER,has been obtained.
基金supported by the fund of the State Key Laboratory of Solidification Processing in NWPU,China (Grants Nos. 17-TZ-2007,03-TP-2008,and 24-TZ-2009)the Doctorate Foundation of Northwestern Polytechnical University
文摘All the quantitative phase field models try to get rid of the artificial factors of solutal drag, interface diffusion and interface stretch in the diffuse interface. These artificial non-equilibrium effects due to the introducing of diffuse interface are analysed based on the thermodynamic status across the diffuse interface in the quantitative phase field model of binary alloys. Results indicate that the non-equilibrium effects are related to the negative driving force in the local region of solid side across the diffuse interface. The negative driving force results from the fact that the phase field model is derived from equilibrium condition but used to simulate the non-equilibrium solidification process. The interface thickness dependence of the non-equilibrium effects and its restriction on the large scale simulation are also discussed.
文摘Theoretical model for non -equilibrium solidification is constructed with consideration of diffuse interface and multiphase fluctuation. It can he degenerated to Aziz continuous growth model in the case of mono-atomic approximation. for large undercooling, the change of heat capacity should not he neglected and it usually gives an increase in the interface partition coefficient. Solute trapping may happen at a rather slow growth rate compared with that predicted by other models, because the undercooling and structural relaxation ahead of the S/ L interface lowers the interfacial diffusivity to a great extent. Plase fluctuation has two contending effects, decrease in energy barrier and increase in atomic dragging, therefore exerts dual influences on the partition coefficient.
基金supported by the National Natural Science Foundation of China under Grants No.12072127,No 51836003,No.52075201 and No.52188102.
文摘In this work,we proposed a diffuse-interface model for the dendritic growth with thermosolutal convection.In this model,the sharp boundary between the fluid and solid dendrite is firstly replaced by a thin but nonzero thickness diffuse interface,which is described by the order parameter,and the diffuse-interface based governing equations for the dendritic growth are presented.To solve the model for the dendritic growth with thermosolutal convection,we also developed a diffuse-interface multirelaxation-time lattice Boltzmann(LB)method.In this method,the order parameter in the phase-field equation is combined into the force caused by the fluid-solid interaction,and the treatment on the complex fluid-solid interface can be avoided.In addition,four LB models are designed for the phase-field equation,concentration equation,temperature equation and the Navier-Stokes equations in a unified framework.Finally,we performed some simulations of the dendritic growth to test the present diffuse-interface LB method,and found that the numerical results are in good agreements with some previous works.
基金funded by the Deutsche For-schungsgemeinschaft(DFG,German Research Foundation)-422037413-CRC/TRR 287"BULK-REACTION".
文摘A compressible lattice Boltzmann-finite difference method is extended by the phase-field approach into a monolithic scheme to study fluid flow and heat transfer through regular arrangements of solid bodies of circular,elliptical and irregular shapes.The advantage of using the phase-field method is demon-strated both in its simplicity of accounting for flow and thermal boundary conditions at solid surfaces with irregular shapes and in the capability of generating such complex-shaped objects.For an array of discs,numerical results for the overall solid-to-gas heat transfer rate are validated via experiments on flow through arrays of hot cylinders.The thus validated compressible LB-FD-PF hybrid scheme is used to study the dependence of heat transfer on flow and thermal boundary conditions(Reynolds number,temperature difference between the hot solid bodies and the inlet gas),porosity as well as on the shape of solid objects.Results are rationalized in terms of the residence time of the gas close to the solid body and downstream variations of gas velocity and temperature.Perspective for further applications of the proposed methodology are also discussed.
基金Supported by the NNSF of China(Grant Nos.12171438,11801133)the Natural Science Foundation of Henan Province(Grant No.152300410227)the grant from the Special Project of Basic Scientific Research Business Expenses of Zhongyuan University of Technology(Grant No.K2020TD004)。
文摘In this paper,we consider the global spherically symmetric solutions for the initial boundary value problem of a coupled compressible Navier–Stokes/Allen–Cahn system which describes the motion of two-phase viscous compressible fluids.We prove the existence and uniqueness of global classical solution,weak solution and strong solution under the assumption of spherically symmetry condition for initial dataρ0 without vacuum state.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11372313, U1562105, and 11611130019)the Chinese Academy of Sciences (CAS) through CAS Interdisciplinary Innovation Team Project, the CAS Key Research Program of Frontier Sciences (Grant No. QYZDJ-SSW-JSC019)the CAS Strategic Priority Research Program (Grant No. XDB22040401)
文摘electrolyte. The properties of lithium-ion (Li-ion) battery, such as cycle life, irreversible capacity loss, self-discharge rate, electrode corrosion and safety are usually ascribed to the quality of the SEI, which are highly dependent on the thickness. Thus, understanding the formation mechanism and the SEI thickness is of prime interest. First, we apply dimensional analysis to obtain an explicit relation between the thickness and the number density in this study. Then the SEI thickness in the initial charge-discharge cycle is analyzed and estimated for the first time using the Cahn-Hilliard phase-field model. In addition, the SEI thickness by molecular dynamics simulation validates the theoretical results. It has been shown that the established model and the simulation in this paper estimate the SEI thickness concisely within order-of-magnitude of nanometers. Our results may help in evaluating the performance of SEI and assist the future design of Li-ion battery.
文摘In this paper, we present two second-order numerical schemes to solve the fourth order parabolic equation derived from a diffuse interface model with Peng-Robinson Equation of state (EOS) for pure substance. The mass conservation, energy decay property, unique solvability and L~ convergence of these two schemes are proved. Numerical results demon- strate the good approximation of the fourth order equation and confirm reliability of these two schemes.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11425210,11621202 and 11672288)
文摘In this paper, we investigate flows with moving contact lines on curved solid walls on a dual-resolution grid using a diffuse-interface immersed-boundary(DIIB) method. The dual-resolution grid, on which the flows are solved on a coarse mesh while the interface is resolved on a fine mesh, was shown to significantly improve the computational efficiency when simulating multiphase flows. On the other hand, the DIIB method is able to resolve dynamic wetting on curved substrates on a Cartesian grid, but it usually requires a mesh of high resolution in the vicinity of a moving contact line to resolve the local flow. In the present study, we couple the DIIB method with the dual-resolution grid, to improve the interface resolution for flows with moving contact lines on curved solid walls at an affordable cost. The dynamic behavior of moving contact lines is validated by studying drop spreading, and the numerical results suggest that the effective slip length λ_n can be approximated by 1.9Cn, where Cn is a dimensionless measure of the thickness of the diffuse interface. We also apply the method to drop impact onto a convex substrate, and the results on the dual-resolution grid are in good agreement with those on a single-resolution grid. It shows that the axisymmetric simulations using the DIIB method on the dual-resolution grid saves nearly 60% of the computational time compared with that on a single-resolution grid.
文摘We propose a hybrid scheme combing the level set method and the multicomponent diffuse interface method to simulate complex multi-phase flows.The overall numerical scheme is based on a sharp interface framework where the level set method is adopted to capture the material interface,the Euler equation is used to describe a single-phase flow on one side of the interface and the six-equation diffuse interface model is applied to model the multi-phase mixture or gas-liquid cavitation on the other side.An exact Riemann solver,between the Euler equation and the six-equation model with highly nonlinear Mie-Gr¨uneisen equations of state,is developed to predict the interfacial states and compute the phase interface flux.Several numerical examples,including shock tube problems,cavitation problems,air blast and underwater explosion applications are presented to validate the numerical scheme and the Riemann solver.
文摘We propose a hybrid scheme combing the diffuse interface method and the material point method to simulate the complex interactions between the multiphase compressible flow and elastoplastic solid.The multiphase flow is modelled by the multi-component model and solved using a generalized Godunov method in the Eulerian grids,while the elastoplastic solid is solved by the classical material point method in a combination of Lagrangian particles and Eulerian background grids.In order to facilitate the simulation of fluid-solid interactions,the solid variables are further interpolated to the cell center and coexist with the fluid in the same cell.An instantaneous relaxation procedure of velocity and pressure is adopted to simulate the momentum and energy transfers between various materials,and to keep the system within a tightly coupled interaction.Several numerical examples,including shock tube problem,gasbubble problem,air blast,underwater explosion and high speed impact applications are presented to validate the numerical scheme.
基金The PhD fellowship(P.M.Dupuy)financed by the Research Council of Norway,Petromaks programme,through the project HiPGLS(169477)is gratefully appreciated.
文摘Free energy lattice Boltzmann methods are well suited for the simulation of two phase flow problems.The model for the interface is based on well understood physical grounds.In most cases a numerical interface is used instead of the physical one because of lattice resolution limitations.In this paper we present a framework where we can both follow the droplet behavior in a coarse scale and solve the interface in a fine scale simultaneously.We apply the method for the simulation of a droplet using an interface to diameter size ratio of 1 to 280.In a second simulation,a small droplet coalesces with a 42 times larger droplet producing on it only a small capillary wave that propagates and dissipates.
基金supported in part by US NSF-DMS 1016073,NSFC 11271350 and 91130019Special Research Funds for State Key Laboratories Y22612A33S+1 种基金China 863 project 2010AA012301 and 2012AA01A304China 973 project 2011CB309702.
文摘We consider the finite element based computation of topological quantities of implicitly represented surfaces within a diffuse interface framework.Utilizing an adaptive finite element implementation with effective gradient recovery techniques,we discuss how the Euler number can be accurately computed directly from the numerically solved phase field functions or order parameters.Numerical examples and applications to the topological analysis of point clouds are also presented.
基金financial supports from the Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJ1712301, KJ1601302)Chongqing Science and Technology Commission (cstc2017jcyj AX0394, cstc2017jcyj A1019)+1 种基金the Research Foundation of Yangtze Normal University (2016RYQD15, 2016XJQN32)the National Natural Science Foundation of China (51701033)
文摘The diffusion behavior and reactions between AI and Ca in Mg alloys by diffusion couple method were investigated. Results demonstrate that Al2Ca is the only phase existing in the diffusion reaction layers. The volume fraction of Al2Ca in diffusion reaction layers increases linearly with temperature. The standard enthalpy of formation for intermetallic compounds was rationalized on the basis of the Miedema model. Al-Ca intermetallic compounds were preferable to form in the Mg-Al-Ca ternary system under the same conditions. Over the range of 350-400℃, the structure of Al2Ca is more stable than that of Al4Ca, Al14Ca13and Al3Ca8, The growth constants of the layer I, layer II and entire diffusion reaction layers were determined. The activation energies for the growth of the layer I, layer II and entire diffusion reaction layers were (80.74 ± 3.01 ) kJ/mol, (93.45 ±2.12) kJ/mol and (83.52 ±1.50) kJ/mot, respectively. In layer I and II, AI has higher integrated interdiffusion coefficients D^i^Int,layer layer than Ca. The average effective interdiffusion coefficients D^Al^eff values are higher than D^Ca^eff in the layer I and II.