期刊文献+
共找到49篇文章
< 1 2 3 >
每页显示 20 50 100
Interface Effect of Ru-MoS_(2) Nanoflowers on Lignin Substrate for Enhanced Hydrogen Evolution Activity 被引量:2
1
作者 Yeqing Xu Xingxing Jiang +9 位作者 Gonglei Shao Haiyan Xiang Sisi Si Xing Li Travis Shihao Hu Guo Hong Shengyi Dong Huimin Li Yexin Feng Song Liu 《Energy & Environmental Materials》 SCIE CSCD 2021年第1期117-125,共9页
The catalytic performance of Molybdenum disulfide(MoS_(2)) has been still far from that of Pt-based catalysts for inadequate active sites and sluggish electron transfer kinetics. Through engineering the interface betw... The catalytic performance of Molybdenum disulfide(MoS_(2)) has been still far from that of Pt-based catalysts for inadequate active sites and sluggish electron transfer kinetics. Through engineering the interface between MoS_(2)-based materials and supported substrates, hybrid Ru-doped MoS_(2) on carbonized lignin(CL) is designed and prepared as efficient catalyst for hydrogen evolution reaction(HER). The CL substrate not only facilitates the growth of MoS_(2) nanoflowers, but also promotes the electron transfer. Ru doping increases active sites greatly for HER. The hybrid catalyst achieves a low onset overpotential of 25 mV and a low Tafel slope of 46 m V dec^(-1). The favorable HER activity ascribes to the interfacial interaction between MoS_(2) and CL. Density functional theory calculations further confirm the improved HER performance with doped Ru atoms. This study presents a prototype application to design electrocatalysts with enhanced carrier mobility and high-density active sites based on interface effect. 展开更多
关键词 carbonized lignin hydrogen evolution reaction interface effect molybdenum disulfide
下载PDF
INTERFACE EFFECT ON THE EFFECTIVE BULK MODULUS OF A PARTICLE-REINFORCED COMPOSITE 被引量:1
2
作者 孙黎 武义明 +1 位作者 黄筑平 王建祥 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第6期676-679,共4页
Classical micromechanical methods for calculating the effective moduli of a heteroge- neous material are generalized to include the interface(surface)effect.By using Hashin's Composite Sphere Assemblage(CSA)model,... Classical micromechanical methods for calculating the effective moduli of a heteroge- neous material are generalized to include the interface(surface)effect.By using Hashin's Composite Sphere Assemblage(CSA)model,a new expression of the bulk modulus for a particle-reinforced com- posite is derived.It is emphasized that the present study is within the finite-deformation framework such that the effective properties are not influenced by the interface stress itself solely,but influenced by the change of the interface stress due to changes of the shape and size of the interface.Hence some inadequacies in previous papers are pointed out. 展开更多
关键词 effective bulk modulus interface effect Hashin's Composite Sphere Assemblage
下载PDF
Shear-horizontal waves in periodic layered nanostructure with both nonlocal and interface effects
3
作者 Ru TIAN Jinxi LIU +1 位作者 E.N.PAN Yuesheng WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第10期1447-1460,共14页
The propagation of shear-horizontal(SH)waves in the periodic layered nanocomposite is investigated by using both the nonlocal integral model and the nonlocal differential model with the interface effect.Based on the t... The propagation of shear-horizontal(SH)waves in the periodic layered nanocomposite is investigated by using both the nonlocal integral model and the nonlocal differential model with the interface effect.Based on the transfer matrix method and the Bloch theory,the band structures for SH waves with both vertical and oblique incidences to the structure are obtained.It is found that by choosing appropriate interface parameters,the dispersion curves predicted by the nonlocal differential model with the interface effect can be tuned to be the same as those based on the nonlocal integral model.Thus,by propagating the SH waves vertically and obliquely to the periodic layered nanostructure,we could invert,respectively,the interface mass density and the interface shear modulus,by matching the dispersion curves.Examples are further shown on how to determine the interface mass density and the interface shear modulus in theory. 展开更多
关键词 shear-horizontal(SH)wave nonlocal theory interface effect NANOSTRUCTURE integral model differential model
下载PDF
Interface effect on structural and electronic properties of graphdiyne adsorbed on SiO_2 and h-BN substrates:A first-principles study
4
作者 董宝娟 杨腾 +1 位作者 王吉章 张志东 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第9期419-423,共5页
We use the first-principles calculation method to study the interface effect on the structure and electronic properties of graphdiyne adsorbed on the conventional substrates of rough SiO2 and flat h-BN. For the SiO2 s... We use the first-principles calculation method to study the interface effect on the structure and electronic properties of graphdiyne adsorbed on the conventional substrates of rough SiO2 and flat h-BN. For the SiO2 substrate, we consider all possible surface terminations, including Si termination with dangling bond, Si terminations with full and partial hydrogenation, and oxygen terminations with dimerization and hydrogenation. We find that graphdiyne can maintain a flat geometry when absorbed on both h-BN and SiO2 substrates except for the Si termination with partial hydrogenation(Si-H) SiO2 substrate. A lack of surface corrugation in graphdiyne on the substrates, which may help maintain its electronic band character, is due to the weak Van der Waals interaction between graphdiyne and the substrate. Si-H SiO2 should be avoided in applications since a covalent type bonding between graphdiyne and SiO2 will totally vary the band structure of graphdiyne.Interestingly, the oxygen termination with dimerization SiO2 substrate has spontaneous p-type doping on graphdiyne via interlayer charge transfer even in the absence of extrinsic impurities in the substrate. Our result may provide a stimulus for future experiments to unveil its potential in electronic device applications. 展开更多
关键词 graphdiyne electronics applications interface effect spontaneous doping
下载PDF
Elastic behavior of disclination dipole near nanotube with surface/interface effect
5
作者 赵迎新 曾鑫 陈昌萍 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第3期77-90,共14页
In this paper, we present an analytical solution of the interaction of the nanotube (NT) with a wedge disclination dipole in nanotube-based composites. The corresponding boundary value problem is solved exactly by u... In this paper, we present an analytical solution of the interaction of the nanotube (NT) with a wedge disclination dipole in nanotube-based composites. The corresponding boundary value problem is solved exactly by using complex potential functions. The explicit expression of the force exerted on disclination dipole is given by using the generalized Peach- Koehler formula. As a numerical illustration, both the equilibrium position and the stability of the disclination dipole are evaluated for different material combinations, relative thickness of an NT, surface/interface effects, and the features of the disclination dipole. The results show that as the thickness of the NT layer increases, the NT has a relatively major role in the force acting on the disclination dipole in the NT-based composite. The cooperative effect of surface/interface stresses and the NT becomes considerable as the increase of NT layer thickness. The equilibrium position may occur, even more than one, due to the influences of the surface/interface stress and the NT thickening. The influences of the surface/interface stresses and the thickness of the NT layer on the force are greatly dependent on the disclination angle. 展开更多
关键词 nanotube-based composites disclination dipole nanotube thickness surface/interface effect
下载PDF
The atomic interface effect of single atom catalysts for electrochemical hydrogen peroxide production 被引量:2
6
作者 Kaiyuan Liu Pengwan Chen +3 位作者 Zhiyi Sun Wenxing Chen Qiang Zhou Xin Gao 《Nano Research》 SCIE EI CSCD 2023年第8期10724-10741,共18页
Producing hydrogen peroxide(H_(2)O_(2))through an electrochemical oxygen reduction reaction(ORR)is a safe,green strategy and a promising alternative to traditional energy-intensive anthraquinone processes.Air and rene... Producing hydrogen peroxide(H_(2)O_(2))through an electrochemical oxygen reduction reaction(ORR)is a safe,green strategy and a promising alternative to traditional energy-intensive anthraquinone processes.Air and renewable power could be utilized for onsite and decentralized H_(2)O_(2)production,demonstrating significant application potential.Currently,single atom catalysts(SACs)have demonstrated significant advantages in the catalytic production of H_(2)O_(2)in 2e−ORR.However,the selectivity of SACs in ORR once puzzled researchers.This article reviews the research on the development and achievements of H_(2)O_(2)production by SACs catalysis in recent years.Especially,the structure-performance relationship is a guide to designing new SACs.Combining advanced characterization techniques and theoretical calculation methods,researchers have a clearer and more thorough understanding of the impact of the atomic interface of SACs on ORR catalytic performance.The coordination moiety formed between the active metal center atom and the support seriously determines the selectivity of SACs,mainly manifested in the adsorption of*OOH intermediates.Particularly,the atomic interface of metal atoms together with O/N co-coordination exhibit high selectivity and mass activity,and heteroatoms or functional groups on carbon supports present synergistic effects to promote the production of H_(2)O_(2)in 2e−ORR.Fine and accurate regulation of the atomic interface of SACs directly affects the 2e−ORR performance of the catalysts.Therefore,it is important to deeply understand the atomic interface of SACs and contribute to the development of novel catalysts. 展开更多
关键词 single atom catalysts(SACs) atomic interface effect hydrogen peroxide(H_(2)O_(2))production electrochemical catalysis
原文传递
Stabilizing iridium sites via interface and reconstruction regulations for water oxidation in alkaline and acidic media
7
作者 Weibin Chen Yanhui Song +2 位作者 Lei Li Junjie Guo Zhan Lin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期355-363,I0009,共10页
Exploring effective iridium(Ir)-based electrocatalysts with stable iridium centers is highly desirable for oxygen evolution reaction(OER).Herein,we regulated the incorporation manner of Ir in Co_(3)O_(4)support to sta... Exploring effective iridium(Ir)-based electrocatalysts with stable iridium centers is highly desirable for oxygen evolution reaction(OER).Herein,we regulated the incorporation manner of Ir in Co_(3)O_(4)support to stabilize the Ir sites for effective OER.When anchored on the surface of Co_(3)O_(4)in the form of Ir(OH)_6 species,the created Ir-OH-Co interface leads to a limited stability and poor acidic OER due to Ir leaching.When doped into Co_(3)O_(4)lattice,the analyses of X-ray absorption spectroscopy,in-situ Raman,and OER measurements show that the partially replacement of Co in Co_(3)O_(4)by Ir atoms inclines to cause strong electronic effect and activate lattice oxygen in the presence of Ir-O-Co interface,and simultaneously master the reconstruction effect to mitigate Ir dissolution,realizing the improved OER activity and stability in alkaline and acidic environments.As a result,Ir_(lat)@Co_(3)O_(4)with Ir loading of 3.67 wt%requires 294±4 mV/285±3 mV and 326±2 mV to deliver 10 mA cm^(-2)in alkaline(0.1 M KOH/1.0 M KOH)and acidic(0.5 M H_(2)SO_(4))solution,respectively,with good stability. 展开更多
关键词 interface effect RECONSTRUCTION Ir dissolution Ir-O-Co Oxygen evolution reaction
下载PDF
The effect of Fe-Mn minerals and seawater interface and enrich-ment mechanism of ore-forming elements of polymetallic crusts and nodules from the South China Sea 被引量:4
8
作者 GUAN Yao SUN Xiaoming +7 位作者 IANG Xiaodong SA Rina ZHOU Li HUANG Yi LIU Yating LI Xiaojie LU Rongfei WANG Chi 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第6期34-46,共13页
Ferromanganese crusts and nodules are important submarine mineral resources that contain various metal elements with significant economic value. In this study, polymetallic crusts and nodules obtained from the South C... Ferromanganese crusts and nodules are important submarine mineral resources that contain various metal elements with significant economic value. In this study, polymetallic crusts and nodules obtained from the South China Sea (SCS) were determined by using X-ray power diffraction (XRD), Raman spectroscopy (RS), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) to systematically investigate and analyze the mineralogical and spectral characteristics of the Fe-Mn minerals. XRD measurements revealed that the SCS polymetallic crusts and nodules were composed of vernadite, quartz, and plagioclase. The nodules also contained todorokite. The Fe-phase minerals of the SCS crusts and nodules were composed of amorphous Fe oxide/hydroxide, and the Mn- and Fe-phases minerals exhibited relatively poor degrees of crystallization. FTIR results showed that the Fe-Mn minerals in the crusts and nodules included a large number of surface hydroxyl groups. These surface hydroxyl groups contained protons that could provide reactive sites for complexation of ore-forming elements in seawater. XPS results indicated that the surfaces of the Fe-Mn minerals mainly contained Fe, Mn, and O. Fe was present in the trivalent oxidation state, while Mn, which may contain several bivalent oxidation state, was present in the tetravalent and trivalent oxidation states. The SCS polymetallic crusts and nodules were compared with Pacific seamount crusts, and results showed that the surface hydroxyl (-OH) groups of the SCS crusts and nodules numbered more than the lattice oxygen (O^2-). But the lattice oxygen of Pacific seamount crusts numbered more than the surface hydroxyl groups. This characteristic indicated that the degree of crystallization of Fe-Mn minerals from the Pacific Ocean was higher than that of minerals from the South China Sea. Comprehensive studies showed that ore-forming elements in the interface between seawater and the Fe-Mn minerals in the submarine ferromanganese crusts and nodules employed the following enrichment mechanisms: (1) the metal ion complexed with the surface hydroxyl of Fe-Mn minerals to form hydroxyl complexes, which were connected by coordination bonds or stable inner-sphere complexes that exchanged protons on the mineral surfaces; (2) the charged surfaces of the minerals and metal cations formed outer-sphere complexes, which made up the electrostatic double layer, through electrostatic adsorption; and (3) the metal cations isomorphously exchanged the Mn and Fe ions of the mineral lattice structure. 展开更多
关键词 polymetallic crust and nodule mineralogy characteristic interface effect element enrichment surfacecomplexation
下载PDF
The effect of NiO-Ni_(3)N interfaces in in-situ formed heterostructure ultrafine nanoparticles on enhanced polysulfide regulation in lithium-sulfur batteries 被引量:4
9
作者 Jun Pu Zhenghua Wang +3 位作者 Pan Xue Kaiping Zhu Jiachen Li Yagang Yao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期762-770,共9页
Inhibiting the “shuttle effect” of soluble polysulfides and improving reaction kinetics are the key factors necessary for further exploration of high-performance Li-S batteries. Herein, an effective interface engine... Inhibiting the “shuttle effect” of soluble polysulfides and improving reaction kinetics are the key factors necessary for further exploration of high-performance Li-S batteries. Herein, an effective interface engineering strategy is reported, wherein nitriding of an Ni-based precursor is controlled to enhance Li-S cell regulation. The resulting in-situ formed NiO-Ni_(3)N heterostructure interface not only has a stronger polysulfide adsorption effect than that of monomeric NiO or Ni_(3)N but also has a faster Li ion diffusion ability than a simple physical mixture. More importantly, this approach couples the respective advantages of NiO and Ni_(3)N to reduce polarization and facilitate electron transfer during polysulfide reactions and synergistically catalyze polysulfide conversion. In addition, ultrafine nanoparticles are thought to effectively improve the use of additive materials. In summary, Li-S batteries based on this NiO-Ni_(3)N heterostructure have the features of long cycle stability, rapid charging-discharging, and good performance under high sulfur loading. 展开更多
关键词 NiO-Ni_(3)N heterostructure interface effect Ultrafine nanoparticles Li-S batteries Polysulfides
下载PDF
Effects of grinding-induced grain boundary and interfaces on electrical transportation and structure phase transition in ZnSe under high pressure 被引量:1
10
作者 杨洁 汪沛 +3 位作者 张国召 周晓雪 李静 刘才龙 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第6期366-370,共5页
Interface and scale effects are the two most important factors which strongly affect the structure and the properties of nano-/micro-crystals under pressure.We conduct an experiment under high pressure in situ alterna... Interface and scale effects are the two most important factors which strongly affect the structure and the properties of nano-/micro-crystals under pressure.We conduct an experiment under high pressure in situ alternating current impedance to elucidate the effects of interface on the structure and electrical transport behavior of two Zn Se samples with different sizes obtained by physical grinding.The results show that(i) two different-sized Zn Se samples undergo the same phase transitions from zinc blend to cinnabar-type phase and then to rock salt phase;(ii) the structural transition pressure of the859-nm Zn Se sample is higher than that of the sample of 478 nm,which indicates the strong scale effect.The pressure induced boundary resistance change is obtained by fitting the impedance spectrum,which shows that the boundary conduction dominates the electrical transport behavior of Zn Se in the whole experimental pressure range.By comparing the impedance spectra of two different-sized Zn Se samples at high pressure,we find that the resistance of the 478-nm Zn Se sample is lower than that of the 859-nm sample,which illustrates that the sample with smaller particle size has more defects which are due to physical grinding. 展开更多
关键词 interface effect IMPEDANCE phase transition high pressure
下载PDF
Micromechanics of composites with interface effects 被引量:1
11
作者 Huiling Duan Jianxiang Wang Zhuping Huang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2022年第4期1-20,I0001,共21页
In terfaces that exist in composites greatly influence their mechanical and conductive properties.There are usually three interface models to characterize the elastic and conductive properties of the interface in comp... In terfaces that exist in composites greatly influence their mechanical and conductive properties.There are usually three interface models to characterize the elastic and conductive properties of the interface in composites.For elastic problems,they are the interface stress model(ISM),linear spring model(LSM),and interphase model.For conductive problems,they are the high conducting(HC)interface model,low conducting(LC)interface model,and interphase model.For elastic problems with the interface effects,they can be divided into two types.The first kind of elastic problem concerns the solution of boundary value problems and aims to predict the effective properties of composites with interface effects.The second kind of elastic problem concerns the surface/interface stress effects on the elastic properties of nanostructured materials,which is usually characterized by the ISM.In this paper,three aspects in the elastic problems with interface effects are first reviewed,i.e.,equivalent relations among the three interface models,Eshelby formalism,and micromechanical frameworks.Special emphasis is placed on the ISM to show how classical models can be extended to the nano-scale by supplementing the interface elasticity to the basic equations of the classical elastic problems.Then,the conductive problems of the composites with the interface effects are also reviewed,and the general frameworks for predicting the effective conductivity of the composites are given.Finally,scaling laws depicting the size-dependent elastic and conductive properties of the composites are discussed. 展开更多
关键词 interface effect.Micromechanics COMPOSITES effective properties Scaling law
原文传递
Duplex Interpenetrating-Phase FeNiZn and FeNi_(3)Heterostructure with Low-Gibbs Free Energy Interface Coupling for Highly Efficient Overall Water Splitting 被引量:8
12
作者 Qiuxia Zhou Caixia Xu +4 位作者 Jiagang Hou Wenqing Ma Tianzhen Jian Shishen Yan Hong Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第7期72-89,共18页
The sluggish kinetics of both hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)generate the large overpotential in water electrolysis and thus high-cost hydrogen production.Here,multidimensional nanop... The sluggish kinetics of both hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)generate the large overpotential in water electrolysis and thus high-cost hydrogen production.Here,multidimensional nanoporous interpenetrating-phase FeNiZn alloy and FeNi_(3)intermetallic heterostructure is in situ constructed on NiFe foam(FeNiZn/FeNi_(3)@NiFe)by dealloying protocol.Coupling with the eminent synergism among specific constituents and the highly efficient mass transport from integrated porous backbone,FeNiZn/FeNi_(3)@NiFe depicts exceptional bifunctional activities for water splitting with extremely low overpotentials toward OER and HER(η_(1000)=367/245 mV)as well as the robust durability during the 400 h testing in alkaline solution.The as-built water electrolyzer with FeNiZn/FeNi_(3)@NiFe as both anode and cathode exhibits record-high performances for sustainable hydrogen output in terms of much lower cell voltage of 1.759 and 1.919 V to deliver the current density of 500 and 1000 mA cm^(-2)as well long working lives.Density functional theory calculations disclose that the interface interaction between FeNiZn alloy and FeNi_(3)intermetallic generates the modulated electron structure state and optimized intermediate chemisorption,thus diminishing the energy barriers for hydrogen production in water splitting.With the merits of fine performances,scalable fabrication,and low cost,FeNiZn/FeNi_(3)@NiFe holds prospective application potential as the bifunctional electrocatalyst for water splitting. 展开更多
关键词 HETEROSTRUCTURE interface effect DEALLOYING Bifunctional electrocatalyst Overall water splitting
下载PDF
Equivalent inclusions in micromechanics with interface energy effect
13
作者 Zhenguo ZHANG Yongqiang CHEN Zhuping HUANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第11期1497-1516,共20页
In order to apply classical micromechanics in predicting the effective prop- erties of nanocomposites incorporating interface energy, a concept of equivalent inclusion (EI) is usually adopted. The properties of EI a... In order to apply classical micromechanics in predicting the effective prop- erties of nanocomposites incorporating interface energy, a concept of equivalent inclusion (EI) is usually adopted. The properties of EI are obtained by embedding a single inclusion with the interface into an infinite matrix. However, whether such an EI is universal for different micromechanics-based methods is rarely discussed in the literature. In this pa- per, the interface energy theory is used to study the applicability of the above mentioned EI. It is found that some elastic properties of the EI are related only to the properties of the inclusion and the interface, whereas others are also related to the properties of the matrix. The former properties of the EI can be applied to both the classical Mori-Tanaka method (MTM) and the generalized self-consistent method (GSCM). However, the latter can be applied only to the MTM. Two kinds of new EIs are proposed for the GSCM and used to estimate the effective mechanical properties of nanocomposites. 展开更多
关键词 interface effect equivalent inclusion (EI) Mori-Tanaka method (MTM) generalized self-consistent method (GSCM)
下载PDF
Magnetoelectric effects in multiferroic laminated plates with imperfect interfaces 被引量:2
14
作者 DJ. Kong C. Ruan-Wu +2 位作者 Y.X. Luo C.L. Zhang Ch. Zhang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2017年第2期93-99,共7页
Two-dimensional (2D) equations for multiferroic (MF) laminated plates with imperfect interfaces are established in this paper. The interface between two adjacent sublayers, which are not perfectly bonded together,... Two-dimensional (2D) equations for multiferroic (MF) laminated plates with imperfect interfaces are established in this paper. The interface between two adjacent sublayers, which are not perfectly bonded together, is modeled as a general spring-type layer. The mechanical displacements, and the electric and magnetic potentials of the two adjacent layers are assumed to be discontinuous at the interface. As an example, the influences of imperfect interfaces on the magnetoelectric (ME) coupling effects in an MF sandwich plate are investigated with the established 2D governing equations. Numerical results show that the imperfect interfaces have a significant impact on the ME coupling effects in MF laminated structures. 展开更多
关键词 Multiferroic laminated plates Two-dimensional equations Imperfect interfaces Magnetoelectric coupling effects
下载PDF
Modeling porous structure of oil-pressboard interface and its effect on electric field distribution
15
作者 司马文霞 姜赤龙 +1 位作者 毛文奇 唐信 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期338-343,共6页
The oil-pressboard insulation is a typical composite insulation system widely used in the design and manufactory of large power apparatus. The implement of oil-pressboard insulation may lead to surface electrification... The oil-pressboard insulation is a typical composite insulation system widely used in the design and manufactory of large power apparatus. The implement of oil-pressboard insulation may lead to surface electrification and discharge at the interface under certain condition. It is of significant importance to take an insight into the phenomenon occurring at the interface. Through experiment, the pressboard is found as a porous material. The interface changes abruptly from bulk pressboard to the bulk oil as a result of the porous structure. A new model is proposed which divides the interface into bulk oil region, transition region, and bulk pressboard region. The width of the transition region is decided according to the microtome figure. The effective permittivity of the transition region is calculated using a new model based on fractal theory. The model is validated and compared with previous calculation model. The effect of the existence of transition region on the electric field distribution is discussed. 展开更多
关键词 oil-pressboard interface transition region effective permittivity fractal electric field distribution
下载PDF
Effect of Metallurgical Behaviour at the Interface between Ceramic and Interlayer on the Si_3N_4/1.25Cr-0.5Mo Steel Joint Strength
16
作者 Huaping XIONG (Dept. of Materials Science and Engineering, Jilin University of Technology, Changchun 130025, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1998年第1期20-24,共5页
By using newly developed CuNi5~25Ti16~28 B rapldly solidifled brazing filler the joining of Si3 N4/1.25Cr-0.5Mo steel has been carried out with interlayer method. If employing the interlayer structure of steel (0.2 mm... By using newly developed CuNi5~25Ti16~28 B rapldly solidifled brazing filler the joining of Si3 N4/1.25Cr-0.5Mo steel has been carried out with interlayer method. If employing the interlayer structure of steel (0.2 mm)/W (2.0 mm)/Ni(0.2 mm), the joint strength can be increased greatly compared with employing that of Ni/W/Ni, and the three point bend strength of the Joint shows the value of 261 MPa. The metallurgical behaviour at the interface between Si3N4 and the interlayer has been studied. It is found that Fe participated in the interfacial reactions between Si3N4 and the brazing filler at the Si3N4/steel (0.2 mm) interface and the compound Fe5Si3 was produced. However, since the reactions of Fe with the active Ti are weaker than those of Ni with Ti, the normal inter facial reactions were still assured at the interface of Si3N4/steel (0.2 mm) instead of Si3N4/Ni (0.2 mm), resulting in the improvement of the joint strength. The mechanism of the formation of Fe5Si3 is also discussed. Finally, some ideas to further ameliorate and simplify the interlayer structure are put forward. 展开更多
关键词 SI effect of Metallurgical Behaviour at the interface between Ceramic and Interlayer on the Si3N4/1.25Cr-0.5Mo Steel Joint Strength Ni Cr Mo
下载PDF
Effects of Thickness on the Electrical Conductivity of Sputtered YSZ Film with Nanocrystalline Columnar Microstructure 被引量:1
17
作者 YANG Qingqing MENG Bin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第6期1344-1349,共6页
In order to investigate the effect of the thickness on the electrical conductivity of yttriastabilized zirconia(YSZ) film, the nanocrystalline columnar-structured YSZ film with thickness of 0.67-2.52 μm was prepared ... In order to investigate the effect of the thickness on the electrical conductivity of yttriastabilized zirconia(YSZ) film, the nanocrystalline columnar-structured YSZ film with thickness of 0.67-2.52 μm was prepared by magnetron sputtering through controlling the deposition time. All the sputtered films with different thicknesses consist of the main phase of cubic YSZ as well as a small amount of monoclinic YSZ. The thicker films exhibit a typical columnar grain structure based on the fractured cross-sectional SEM observations. The average diameters of columnar grains increase from about 40 nm to 100 nm with the film thickness from 0.67 μm to 2.52 μm according to TEM analysis. The thinnest YSZ film with 0.67 μm thickness shows the highest apparent electrical conductivity in the four films in 400-800 ℃ due to the contribution from the highly conductive film/substrate interfacial region. On the other hand, the real electrical conductivities of YSZ films increase with film thickness from 0.67 μm to 2.52 μm after eliminating the contribution of the film/substrate interface. The increasing film thickness leads to the grain growth as well as the decrement in the volumetric fraction of the resistive columnar grain boundary and a consequent higher real electrical conductivity. 展开更多
关键词 YSZ film columnar microstructure magnetron sputtering interface effect space charge effect
下载PDF
Influence of interface within the composite barrier on the tunneling electroresistance of ferroelectric tunnel junctions with symmetric electrodes 被引量:1
18
作者 王品之 朱素华 +1 位作者 潘涛 吴银忠 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第2期372-375,共4页
The interface with a pinned dipole within the composite barrier in a ferroelectric tunnel junction(FTJ) with symmetric electrodes is investigated.Different from the detrimental effect of the interface between the el... The interface with a pinned dipole within the composite barrier in a ferroelectric tunnel junction(FTJ) with symmetric electrodes is investigated.Different from the detrimental effect of the interface between the electrode and barrier in previous studies,the existence of an interface between the dielectric SrTiO_3 slab and ferroelectric BaTiO_3 slab in FTJs will enhance the tunneling electroresistance(TER) effect.Specifically,the interface with a lower dielectric constant and larger polarization pointing to the ferroelectric slab favors the increase of TER ratio.Therefore,interface control of high performance FTJ can be achieved. 展开更多
关键词 ferroelectric tunnel junction interface effect tunneling electroresistance
下载PDF
Size-dependent electromechanical properties in piezoelectric superlattices due to flexoelectric effect 被引量:1
19
作者 Chang Liu Jie Wang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2017年第2期88-92,共5页
Piezoelectric superlattice is a potential component for nanoelectromechanical systems. Due to the strong nonlocal effect such as flexoelectric effect at interfaces, classical piezoelectric theory is unable to accurate... Piezoelectric superlattice is a potential component for nanoelectromechanical systems. Due to the strong nonlocal effect such as flexoelectric effect at interfaces, classical piezoelectric theory is unable to accurately describe the electromechanical response of piezoelectric superlattice at nanoscale scale. Based on the previous nonlocal thermodynamics theory with flexoelectric effect Liu et al. (2016), the size- dependent electromechanical properties of piezoelectric superlattices made of BaTiO3 (BTO) and PbTiO3 (PRO) layers are investigated systematically in the present work. Giant strain gradient is found near the interface between BTO and PTO layers, which leads to the significant enhancement of polarization in the superlattice due to the flexoelectric effect. For the piezoelectric BTO-PTO superlattices with different unit- cell sizes, the thickness of interface with nontrivial strain gradient is almost constant. The influence of strain gradient at the interface becomes significant when the size of superlattice decreases, As a result, a strong size dependence of electromechanical properties is predicted for the piezoelectric BTO-PTO superlattices, In particular, for the superlattices with a specific thickness ratio of BTO and PTO layers, the piezoelectric response can be several times larger than that of bulk structure. The present work demonstrates a practical wast to design the piezoelectric superlattices with high piezoelectric coefficient by using the nonlocal effect at nanoscale. 展开更多
关键词 Piezoelectric property Superlattices Flexoelectricity interface effect
下载PDF
Dislocation stability in three-phase nanocomposites with imperfect interface
20
作者 Ying-Xin Zhao You-Wen Liu Qi-Hong Fang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第5期693-702,共10页
Interface imperfection can significantly affect the mechanical properties and failure mechanisms as well as the strength and toughness of nanocomposites. The elastic behavior of a screw dislocation in nanoscale coatin... Interface imperfection can significantly affect the mechanical properties and failure mechanisms as well as the strength and toughness of nanocomposites. The elastic behavior of a screw dislocation in nanoscale coating with imperfect interface is studied in the three-phase composite cylinder model. The interface between inner nanoin- homogeneity and intermediate coating is assumed as perfectly bonded. The bonding between intermediate coating and outer matrix is considered to be imperfect with the assumption that interface imperfection is uniform, and a linear spring model is adopted to describe the weakness of imperfect interface. The explicit expression for image force acting on dislocation is obtained by means of a complex variable method. The analytic results indicate that inner interface effect and outer interface imperfection, simultaneously taken into account, would influence greatly image force, equilibrium position and stability of dislocation, and various critical parameters that would change dislocation stability. The weaker interface is a very strong trap for glide dislocation and, thus, a more effective barrier for slip transmission. 展开更多
关键词 Nanocomposites -Dislocation Imperfect inter- face - interface effect Complex variable method
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部