期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Interface fracture toughness and fracture mechanisms of thermal barrier coatings investigated by indentation test and acoustic emission technique 被引量:1
1
作者 韩纪层 郭平 +2 位作者 罗建霞 张志超 李强 《China Welding》 EI CAS 2016年第3期63-70,共8页
Interface fracture toughness and fracture mechanisms of plasma-/sprayed thermal barrier coatings (TBCs) were investigated by interfacial indentation test ( HT) in combination with acoustic emission ( AE ) measur... Interface fracture toughness and fracture mechanisms of plasma-/sprayed thermal barrier coatings (TBCs) were investigated by interfacial indentation test ( HT) in combination with acoustic emission ( AE ) measurement. Critical load and AE energy were employed to calculate interface fracture toughness. The critical point at which crack appears at the interface was determined by the HT. AE signals produced during total indentation test not only are used to investigate the interface cracking behavior by Fast Fourier Transform (FFT) and wavelet transforms but also supply the mechanical information. The result shows that the AE signals associated with coating plastic deformation during indentation are of a more continuous type with a lower characteristic frequency content (30 -60 kHz) , whereas the instantaneous relaxation associated with interface crack initiation produces burst type AE signals with a characteristic frequency in the range 70 - 200 kHz. The AE signals energy is concentrated on different scales for the coating plastic deformation, interface crack initiation and interface crack propagation. Interface fracture toughness calculated by AE energy was 1. 19 MPam1/2 close to 1.58 MPam1/2 calculated by critical load. It indicates that the acoustic emission energy is suitable to reflect the interface fracture toughness. 展开更多
关键词 thermal barrier coating acoustic emission interface indentation test interface fracture toughness
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部