期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
Effect of travelling magnetic field on interface morphology in directionally solidified Sn-Cd alloy 被引量:2
1
作者 王雷 沈军 +2 位作者 王灵水 冯周荣 傅恒志 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第8期2454-2459,共6页
The diversity of interface morphologies is observed for directionally solidified Sn-0.65%Cd alloy under a travelling magnetic field (TMF) in the 4 mm-diameter sample. Under an upward TMF, planar and cellular interfa... The diversity of interface morphologies is observed for directionally solidified Sn-0.65%Cd alloy under a travelling magnetic field (TMF) in the 4 mm-diameter sample. Under an upward TMF, planar and cellular interface morphologies transform alternately with increasing magnetic flux density (B≤10.3 mT). The interface morphology transforms from shallow cellular to deep cellular morphology under a weak downward TMF (B=3.2 mT). When the magnetic flux density increases further, both sides of the interface morphology appear to be slightly inconsistent, but they roughly tend to be planar under a strong downward TMF (BS10.3 mT). The interface instability may be attributed to the flow driven by the TMF. Moreover, the shape of interface appears to be almost flat under an upward TMF, but deflective under a downward TMF. 展开更多
关键词 directional solidification travelling magnetic field interface morphology Sn-Cd alloy
下载PDF
Bonding interface morphology of keyholeless friction stir spot welded joint of AZ31B Mg alloy and DP600 galvanized steel 被引量:1
2
作者 Liu Xiao Zhao Fengling +3 位作者 Niu Hongwei Chen Yang Wang Chenyang Li Xiaoping 《China Welding》 CAS 2021年第4期42-50,共9页
Because the bonding interface of dissimilar metal joint between AZ31 B Mg alloy and DP600 galvanized steel by keyholeless friction stir spot welding(KFSSW)is permanent bonding,the interface morphology cannot be direct... Because the bonding interface of dissimilar metal joint between AZ31 B Mg alloy and DP600 galvanized steel by keyholeless friction stir spot welding(KFSSW)is permanent bonding,the interface morphology cannot be directly observed.If the joint is separated by external force,the original features of bonding interface of joint will be destroyed,which has influence on the accuracy for observation and analysis of the result.In this paper,the coordinates of the key point at the interface of every cross-section at intervals of 0.2 mm were measured and connected into an outline.The outline of all interfaces makes up the three-dimensional morphologies of bonding interface between AZ31 B Mg alloy and DP600 steel by KFSSW,which was constructed by Solidworks software to restore the real mechanical bonding state of joint.Combined with the microhardness analysis of cross-section and results of in-situ tensile test,the unique bonding state and morphology of Mg and steel in the welded joint were confirmed. 展开更多
关键词 keyholeless friction stir spot welding Mg/steel bonding interface morphology MICROHARDNESS in-situ tensile
下载PDF
Numerical simulation of TBCs residual stresses by the growth of TGO on typical interface morphology
3
作者 韩志勇 张华 王志平 《China Welding》 EI CAS 2012年第2期64-68,共5页
The effect of TGO ( thermally grown oxide ) growth based on typical interface morphology on residual stresses distribution in thermal barrier coatings was analyzed by ABAQUS software. TGO oxidation kinetics, the rel... The effect of TGO ( thermally grown oxide ) growth based on typical interface morphology on residual stresses distribution in thermal barrier coatings was analyzed by ABAQUS software. TGO oxidation kinetics, the relationship between TGO thickness and thermal cycles number, and typical morphology including sinusoid , cone and groove were considered in the calculation process. 13 FEM (finite element method) models with different TGO thickness based on uniform interface morphology were established for analysis. The calculation results show that TCC ( top ceramic coating ) /TGO and TGO/BC (bond coating) interface residual stresses are affected significantly by inter)hce morphology and TGO thickness, both of which increase significantly with TGO growth ; the stress level in TCC/TGO interface is greater than that of TGO/BC interface ; each morphology peak exhibits tensile stress while each valley exhibits compressive stress in TCC/TGO interface; stress concentrates in such locations as each morphology center with sharp angle and the stress reaches the maximal value at the tip of each angle. 展开更多
关键词 thermal barrier coatings FEM residual stress interface morphology TGO growth
下载PDF
Effects of Ca(Y)-Si modifier on interface morphology and solute segregation during directional solidification of an austenite medium Mn steel
4
作者 Gaofei Liang Zhenming Xu Jianguo Li 《Journal of University of Science and Technology Beijing》 CSCD 2005年第4期335-339,共5页
The austenite medium Mn steel modified with controlled additions of Ca, Y, Si were directionally solidified using the vertical Bridgman method to study the effects of Ca(Y)-Si modifier on the solid-liquid (S-L) in... The austenite medium Mn steel modified with controlled additions of Ca, Y, Si were directionally solidified using the vertical Bridgman method to study the effects of Ca(Y)-Si modifier on the solid-liquid (S-L) interface morphology and solute segregation. The interface morphology and the C and Mn segregation of the steel directionally solidified at 6.9 μtrn/s were investigated with an image analysis and a scanning electron microscope equipped with energy dispersive X-ray analysis. The 0.5wt% Ca-Si modified steel is solidified with a planar S-L interface. The interface of the 1.0wt% Ca-Si modified steel is similar to that of the 0.5wt% Ca-Si modified steel, but with larger nodes. The 1.5wt% Ca-Si modified steel displays a cellular growth parttern. The S-L interface morphology of the 0.5wt% Ca-Si+1.0wt% Y-Si modified Mn steel appears as dendritic interface, and primary austenite dendrites reveal developed lateral branching at the quenched liquid. In the meantime, the independent austenite colonies are formed ahead of the S-L interface. A mechanism involving constitutional supercooling explains the S-L interface evolution. It depends mainly on the difference in the contents of Ca, Y, and Si ahead of the S-L interface. The segregation of C and Mn ahead of the S-L interface enhanced by the modifiers is observed. 展开更多
关键词 austenite Mn steel modification solid-liquid (S-L) interface morphology solute segregation directional solidification
下载PDF
Effect of Melt Superheating Treatment on Directional Solidification Interface Morphology of Multi-component Alloy 被引量:9
5
作者 Changshuai Wang Jun Zhang Lin Liu Hengzhi Fu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2011年第7期668-672,共5页
The influence of melt superheating treatment on the solid/liquid (S/L) interface morphology of directionally solidified Ni-based superalloy DZ125 is investigated to elucidate the relationship between melt characteri... The influence of melt superheating treatment on the solid/liquid (S/L) interface morphology of directionally solidified Ni-based superalloy DZ125 is investigated to elucidate the relationship between melt characteristic and S/L interface stability. The results indicate that the interface morphology is not only related to the withdrawal velocity (R) but also to the melt superheating temperature (Ts) when the thermal gradient of solidification interface remains constant for different Ts with appropriate superheating treatment regulation. The interface morphology changes from cell to plane at R of 1.1 μm/s when Ts increases from 1500°C to 1650°C, and maintains plane with further elevated Ts of 1750°C. However, the interface morphology changes from coarse dendrite to cell and then to cellular dendrite at R of 2.25 μm/s when Ts increases from 1500°C to 1650°C and then to 1750°C. It is proved that the solidification onset temperature and the solidification interval undergo the nonlinear variation when Ts increases from 1500°C to 1680°C, and the turning point is 1650°C at which the solidification onset temperature and the solidification interval are all minimum. This indicates that the melt superheating treatment enhances the solidification interface stability and has important effect on the solidification characteristics. 展开更多
关键词 Melt superheating treatment Directional solidification interface morphology Solidification characteristics Multi-component alloy
原文传递
Enhanced Power Conversion Efficiency in Bulk Heterojunction Polymer Solar Cells Through Dual-Interface Morphology Modification
6
作者 FAN Xi FANG Guojia 《Wuhan University Journal of Natural Sciences》 CAS 2013年第3期195-200,共6页
Efficient bulk heterojunction(BHJ) polymer solar cells with a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hole transfer layer(HTL) were fabricated via controlling the spin coating speed of the HTL... Efficient bulk heterojunction(BHJ) polymer solar cells with a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hole transfer layer(HTL) were fabricated via controlling the spin coating speed of the HTL solution on a particular fluorinated tin oxide substrates of a high roughness.It shows that the functions of the photovoltaic devices increase with the increase of the HTL surface roughness.Then,an imprinting technique was employed to transfer a suitable pattern of nanostructure arrays to the surface of active layers.At the optimized spin coating speed,the photovoltaic devices exhibited a 28.4% increase in efficiency after this imprinting treatment compared with that of nonimprinted photovoltaic devices.It is mainly attributed to the achievement of high interface areas between active layers and electrodes,which not only increases optical absorption by scattering but also facilitates charge carrier collection. 展开更多
关键词 interface morphology IMPRINTING bulk heterojunction polymer solar cell
原文传递
Interfacial morphology evolution in directionally solidified Al-1.5%Cu alloy 被引量:3
7
作者 屈敏 刘林 +1 位作者 崔岩 刘峰斌 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第2期405-411,共7页
The solid-liquid interracial morphology evolution was investigated in directional solidification (DS) of Al-1.5%Cu alloy (mass fraction). The results show that the solidified microstructural evolution is gradual o... The solid-liquid interracial morphology evolution was investigated in directional solidification (DS) of Al-1.5%Cu alloy (mass fraction). The results show that the solidified microstructural evolution is gradual other than sharp, and the microstructure patterns are interesting and diversiform at the pulling rate ranging from 30 μm/s to 1500 μm/s. Indeed, dendrite to cell transition follows this sequence: dendrites→→banded cellular dendrites→elongated cells and part of dendrites→main elongated cells and little dendrites. Moreover, the present microstructure is not normal microstructure as we saw before. Further, according to the experimental phenomenon, the dendrite to cell transition was studied theoretically. Dendrite tip shape is an important parameter to characterize the dendrite to cell transition. As the dendrite to cell transition is far from equilibrium solidification, non-equilibrium solidification is taken into consideration in calculation. Finally, it is speculated that the dendrite to cell transition would occur at the minimum tip radius. 展开更多
关键词 Al-Cu alloy dendrite to cell transition directional solidification pulling rate interface morphology
下载PDF
INTERFACE MORPHOLOGIES AND MICROSTRUCTURES DURING DENDRITE-TO-CELL TRANSITION AT HIGH GROWTH RATE 被引量:2
8
作者 LI Jianguo MAO Xiemin FU Hengzhi National Laboratory of solidification Technology,Northwestern Polytechnical University,Xi’an,China Lecturer.Faculty No.403,Northwestern Polytechnical University,Xi’an 710072,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1991年第1期71-74,共4页
The interface morphologies and microstruetures of the directionally solidified Ni-5wt-% Cu alloy during dendrite-to-cell transition at high growth rates have been investigated with a newly developed apparatus for unid... The interface morphologies and microstruetures of the directionally solidified Ni-5wt-% Cu alloy during dendrite-to-cell transition at high growth rates have been investigated with a newly developed apparatus for unidirectional solidification with the temperature gradient at the solid/liquid interface higher than 1000 K/cm.The results show that in the vicinity of dendrite-to-cell transition point,the well developed sidebranches become shrivelled with the increase of growth rate and disappear at the dendrite-to-cell transition,and the primary spacing decreases simultaneously.Moreover,the length of mushy zone decreases greatly dur- ing the dendrite-to-cell transition.Cells obtained at high growth rates have very similar morphologies to those at low growth rates,but with much smaller cell spacings and unsmoothed cell walls which may be attributed to the different stability conditions of the cell walls at low and high growth rates respectively. 展开更多
关键词 cellular growth interface morphology primary spacing rapid solidification dendrite-to-cell transition
下载PDF
Formation, Evolution and Final Structure of Interface in 2024Al Joints Fabricated by Explosive Welding 被引量:2
9
作者 夏萌 付艳恕 HU Xiaowu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第5期1171-1178,共8页
The wavy interface for similar or the same metal explosive welding(EXW) and the universal mechanism of wavy interface formation in EXW were studied in this work. Based on a new established model, it was deduced that... The wavy interface for similar or the same metal explosive welding(EXW) and the universal mechanism of wavy interface formation in EXW were studied in this work. Based on a new established model, it was deduced that the evolution frequencies of the instability were constrained in a limited range. Then experiments of identical metal EXW were performed and welding interfaces were characterized for examining the final morphology. By calculating the fractal dimensions and multifractal spectra of welding interface, the fractal characteristics of interface were revealed and a quantitative description was achieved for EXW interface structure. Thus, the formation, evolution and final morphology of wavy interface were systemically researched. 展开更多
关键词 explosive welding instability interface morphology fractal dimensions
下载PDF
INTERFACE MORPHOLOGIES AND SOLUTE SEGREGATION OF Al-Li ALLOY 8090 DURING UNIDIRECTIONAL SOLIDIFICATION
10
作者 LIU Yulin ZHANG Yun ZHAO Hong’en HU Zhuangqi SHI Changxu Institute of Metal Research,Academia Sinica,Shenyang,China Associate Professor,Institute of Metal Research,Academia Sinica,Shenyang 110015,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1993年第2期73-77,共5页
The solid-liquid interface morphology and solute segregation behaviour of AI-Li alloy 8090 during unidirectional solidification were studied by the liquid metal quenehing method under varied processing conditions.When... The solid-liquid interface morphology and solute segregation behaviour of AI-Li alloy 8090 during unidirectional solidification were studied by the liquid metal quenehing method under varied processing conditions.When solidification rate,R<O.13 or>O.75 mm/min (temper- ature gradient,G_L=130℃/cm),the structure revealed of planar or dendritic interface respectively.With the increase of R,the interface morphology becomes cellular from planar gradually,within a narrow range.And the greater the R,the,finer the dendrite.Segregation of element Cu and impurity elements Fe and Si are quite severe,the interface morphology markedly influences on solute segregation.During solidification at coarse dendrite interface, their segregation ratios are rather great and solidified structure is coarse. 展开更多
关键词 Al-Li alloy unidirectional solidification interface morphology solute segregation alloy 8090
下载PDF
The role of physical properties in explosive welding of copper to stainless steel 被引量:2
11
作者 G.H.S.F.L.Carvalho I.Galvao +3 位作者 R.Mendes R.M.Leal A.B.Moreira A.Loureiro 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第4期88-98,共11页
This paper investigates the effects of the physical properties on the microstructure and weldability of explosive welding by joining two metals with a significant contrast in thermophysical properties:stainless steel ... This paper investigates the effects of the physical properties on the microstructure and weldability of explosive welding by joining two metals with a significant contrast in thermophysical properties:stainless steel and copper.Sound welds between stainless steel and copper were obtained,and the interfacial morphology was wavy,regardless of the position of the materials.The weldability of dissimilar pairs was found to be more dependent on the relationship between the physical properties of the base materials than on the absolute value of the material property.When there is a significant difference in thermal conductivity between the flyer and the base plate,together with a material with a low melting temperature,the weldability of the pair is often poor.The relative position of the plates affects the interfacial microstructure even when similar morphologies are found.For the metallic pairs studied,the wave size was bigger for the configuration in which the ratio between the density of the flyer and the density of the base plate is smaller.The same phenomenon was observed for the impedance:bigger waves were found for a smaller ratio between the impedance of the flyer and the impedance of the base plate. 展开更多
关键词 Explosive welding SOLID-STATE Copper-stainless steel Dissimilar interface morphology WELDABILITY
下载PDF
Burn-resistant behavior and mechanism of Ti14 alloy 被引量:3
12
作者 Yong-nan Chen Ya-zhou Huo +3 位作者 Xu-ding Song Zhao-zhao Bi Yang Gao Yong-qing Zhao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第2期215-221,共7页
The direct-current simulation burning method was used to investigate the burn-resistant behavior of Ti14 titanium alloy.The results show that Ti14 alloy exhibits a better burn resistance than TC4 alloy(Ti-6A1-4V).Cu... The direct-current simulation burning method was used to investigate the burn-resistant behavior of Ti14 titanium alloy.The results show that Ti14 alloy exhibits a better burn resistance than TC4 alloy(Ti-6A1-4V).Cu is observed to preferentially migrate to the surface of Ti14 alloy during the burning reaction,and the burned product contains Cu,Cu2O,and TiO2.An oxide layer mainly comprising loose TiO2 is observed beneath the burned product.Meanwhile,Ti2Cu precipitates at grain boundaries near the interface of the oxide layer,preventing the contact between O2 and Ti and forming a rapid diffusion layer near the matrix interface.Consequently,a multiple-layer structure with a Cu-enriched layer(burned product)/Cu-lean layer(oxide layer)/Cu-enriched layer(rapid diffusion layer) configuration is formed in the burn heat-affected zone of Ti14 alloy;this multiple-layer structure is beneficial for preventing O2 diffusion.Furthermore,although A1 can migrate to form A12O3 on the surface of TC4 alloy,the burn-resistant ability of TC4 is unimproved because the Al2O3 is discontinuous and not present in sufficient quantity. 展开更多
关键词 titanium alloys interface morphology burn resistance
下载PDF
Effect of buoyancy-driven convection on steady state dendritic growth in a binary alloy
13
作者 陈明文 王宝 王自东 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第11期467-476,共10页
The effect of buoyancy-driven convection on the steady state dendritic growth in an undercooled binary alloy is studied. For the case of the moderate modified Grashof number, the uniformly valid asymptotic solution in... The effect of buoyancy-driven convection on the steady state dendritic growth in an undercooled binary alloy is studied. For the case of the moderate modified Grashof number, the uniformly valid asymptotic solution in the entire region of space is obtained by means of the matched asymptotic expansion method. The analytical results show that the buoyancy- driven convection has a significant effect on the needle-like interface of dendritic growth. Due to the buoyancy-driven convection, the needle-like interface shape of the crystal is changed. When the Peclet number that is not affected by the buoyant flow is less than a certain critical value, the interface shape of the dendrite becomes thinner as the Grashof number increases; when it is larger than the critical value, the interface shape becomes fatter as the Grashof number increases. In the undercooled binary alloy the morphology number plays an active role in the interface shape and leads to the buoyancy effect that is different from the situation for the pure melt. The smaller the morphology number is, the more significant change the interface shape has. As the Peclet number further increases, the effect of buoyancy on the interface diminishes eventually. 展开更多
关键词 dendrite growth CONVECTION interface morphology microgravity conditions
下载PDF
Effect of the annealing temperature on the long-term thermal stability of Pt/Si/Ta/Ti/4H–SiC contacts
14
作者 程越 赵高杰 +3 位作者 刘益宏 孙玉俊 王涛 陈之战 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第10期426-431,共6页
The Pt/Si/Ta/Ti multilayer metal contacts on 4H-Si C are annealed in Ar atmosphere at 600°C-1100°C by a rapid thermal processor(RTP). The long-term thermal stability is evaluated by aging the annealed cont... The Pt/Si/Ta/Ti multilayer metal contacts on 4H-Si C are annealed in Ar atmosphere at 600°C-1100°C by a rapid thermal processor(RTP). The long-term thermal stability is evaluated by aging the annealed contact at 600°C in air. The contact's properties are determined by current-voltage measurement, and the specific contact resistance is calculated based on the transmission line model(TLM). Transmission electron microscope(TEM) and energy-dispersive x-ray spectrometry(EDX) are used to characterize the interface morphology, thickness, and composition. The results reveal that a higher annealing temperature is favorable for the formation of an Ohmic contact with a lower specific contact resistance, and causes the rapid degradation of the Ohmic contact in the aging process. 展开更多
关键词 Ohmic contact annealing temperature thermal stability interface morphology
下载PDF
Effect of far-field flow on a columnar crystal in the convective undercooled melt
15
作者 姬小建 陈明文 +1 位作者 徐小花 王自东 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第1期423-428,共6页
The growth behavior of a columnar crystal in the convective undercooled melt affected by the far-field uniform flow is studied and the asymptotic solution for the interface evolution of the columnar crystal is derived... The growth behavior of a columnar crystal in the convective undercooled melt affected by the far-field uniform flow is studied and the asymptotic solution for the interface evolution of the columnar crystal is derived by means of the asymptotic expansion method. The results obtained reveal that the far-field flow induces a significant change of the temperature around the columnar crystal and the convective flow caused by the far-field flow accelerates the growth velocity of the interface of the growing columnar crystal in the upstream direction and inhibits its growth velocity in the downstream direction. Our results are similar to the experimental data and numerical simulations. 展开更多
关键词 columnar crystal far-field uniform flow interface morphology crystal growth
下载PDF
EXPERIMENTAL RESEARCH ON DIRECTIONAL SOLIDIFICATION OF Al-4.5wt%Cu ALLOY BY ACRT METHOD
16
作者 JIE Wanqi(State Key Laboratory of Solidification Processing,Northwestern Polytechnical University,Xi’an 710072,China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1996年第1期17-22,共6页
Accelerated crucible rotation technique(ACRT) has been used for the directional solidification of Al-4.5wt% Cu binary alloy.By rotating the crucible at varying rate and direction,forced liquid flows are aroused These ... Accelerated crucible rotation technique(ACRT) has been used for the directional solidification of Al-4.5wt% Cu binary alloy.By rotating the crucible at varying rate and direction,forced liquid flows are aroused These flows include Ekman flow,Couette flow and Spiral Shear flow.Especially,Ekman flow acts directly at the L/S interface,changes diffusion and heat exchange conditions and has strong influences on the morphology of L/S interface.Experimental results show that,compared with normal Bridgman specimens,the solidification region is much narrower and the cell spacing is much smaller in ACRT specimens.These influences become much stronger when the accelerating rate is increased. 展开更多
关键词 accelerated crucible rotation technique(ACRT) Al-4.5wt%Cu directional solidification morphology of L/S interface cell spacing
下载PDF
Interface structures and mechanical properties of corrugated + flat rolled and traditional rolled Mg/Al clad plates 被引量:8
17
作者 Sha Li Chao Luo +3 位作者 Muhammad-Umar Bashir Yi Jia Jian-Chao Han Tao Wang 《Rare Metals》 SCIE EI CAS CSCD 2021年第10期2947-2955,共9页
The corrugated + flat rolling(CFR) and traditional rolling(TR) methods were used to prepare Mg/Al clad plates using AZ31 B Mg and 5052 Al plates, and the interface morphologies and mechanical properties of the resulti... The corrugated + flat rolling(CFR) and traditional rolling(TR) methods were used to prepare Mg/Al clad plates using AZ31 B Mg and 5052 Al plates, and the interface morphologies and mechanical properties of the resulting clad plates were compared. Examination of the microstructures of the plates showed that the TRed Mg/Al clad plate presented a straight interface, while a corrugated interface containing fractured intermetallic particulates was observed for the CFRed plate due to the inhomogeneous strain induced by the corrugated roller. During the CFR process, the corrugated roller can accelerate the rupture of the substrate work-hardening layers and facilitate the mutual extrusion of fresh metals to enhance the interface bonding. Compared with the traditional basal texture of the Mg alloy, the CFR process can change the texture morphology, thereby enhancing the plastic deformation ability of the Mg plate. Tensile tests showed that the CFRed Mg/Al clad plate exhibited a higher ultimate tensile strength(UTS, 316 MPa), which was~ 8% higher than that of the TRed plate(293 MPa). In addition, the bending curve of the CFRed clad plate was smooth and there was no stress sudden drop phenomenon in the bending process. The higher UTS and excellent bending properties of the CFRed clad plate could be attributed to the enhanced coordinated deformation ability of the substrates induced by the corrugated interface, grain refinement, and the change in the Mg alloy texture morphology. 展开更多
关键词 Mg/Al clad plate Corrugated+flat rolling Traditional rolling interface morphologies Mechanical properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部