期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Experimental investigation of high temperature thermal contact resistance with interface material 被引量:3
1
作者 Xiaoping Zheng1,Donghuan Liu,2,3 Dong Wei,4 and Xinchun Shang 2,3 1) Applied Mechanics Laboratory,Department of Engineering Mechanics,Tsinghua University,Beijing 100084,China 2) Department of Applied Mechanics,University of Science & Technology Beijing,Beijing 100083,China 3) National Center for Materials Service Safety,University of Science & Technology Beijing,Beijing 100083,China 4) China Aerodynamics Research and Development Center,Mianyang 621000,China 《Theoretical & Applied Mechanics Letters》 CAS 2011年第5期41-44,共4页
Thermal contact resistance plays a very important role in heat transfer efficiency and thermomechanical coupling response between two materials,and a common method to reduce the thermal contact resistance is to fill a... Thermal contact resistance plays a very important role in heat transfer efficiency and thermomechanical coupling response between two materials,and a common method to reduce the thermal contact resistance is to fill a soft interface material between these two materials.A testing system of high temperature thermal contact resistance based on INSTRON 8874 is established in the present paper,which can achieve 600 C at the interface.Based on this system,the thermal contact resistance between superalloy GH600 material and three-dimensional braid C/C composite material is experimentally investigated,under different interface pressures,interface roughnesses and temperatures,respectively.At the same time,the mechanism of reducing the thermal contact resistance with carbon fiber sheet as interface material is experimentally investigated.Results show that the present testing system is feasible in the experimental research of high temperature thermal contact resistance. 展开更多
关键词 thermal contact resistance interface material experimental research high temperature alloy C/C composite material
下载PDF
Unveiling phonon frequency-dependent mechanism of heat transport across stacking fault in silicon carbide
2
作者 王甫 孙彦东 +2 位作者 邹宇 徐贲 付宝勤 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期373-380,共8页
Stacking faults(SFs)are often present in silicon carbide(SiC)and affect its thermal and heat-transport properties.However,it is unclear how SFs influence thermal transport.Using non-equilibrium molecular dynamics and ... Stacking faults(SFs)are often present in silicon carbide(SiC)and affect its thermal and heat-transport properties.However,it is unclear how SFs influence thermal transport.Using non-equilibrium molecular dynamics and lattice dynamics simulations,we studied phonon transport in SiC materials with an SF.Compared to perfect SiC materials,the SF can reduce thermal conductivity.This is caused by the additional interface thermal resistance(ITR)of SF,which is difficult to capture by the previous phenomenological models.By analyzing the spectral heat flux,we find that SF reduces the contribution of low-frequency(7.5 THz-12 THz)phonons to the heat flux,which can be attributed to SF reducing the phonon lifetime and group velocity,especially in the low-frequency range.The SF hinders phonon transport and results in an effective interface thermal resistance around the SF.Our results provide insight into the microscopic mechanism of the effect of defects on heat transport and have guiding significance for the regulation of the thermal conductivity of materials. 展开更多
关键词 silicon carbide stacking fault thermal conductivity interface thermal resistance phonon transport spectral heat flux
下载PDF
Emerging Flexible Thermally Conductive Films:Mechanism,Fabrication,Application 被引量:7
3
作者 Chang‑Ping Feng Fang Wei +7 位作者 Kai‑Yin Sun Yan Wang Hong‑Bo Lan Hong‑Jing Shang Fa‑Zhu Ding Lu Bai Jie Yang Wei Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第8期24-57,共34页
Effective thermal management is quite urgent for electronics owing to their ever-growing integration degree,operation frequency and power density,and the main strategy of thermal management is to remove excess energy ... Effective thermal management is quite urgent for electronics owing to their ever-growing integration degree,operation frequency and power density,and the main strategy of thermal management is to remove excess energy from electronics to outside by thermal conductive materials.Compared to the conventional thermal management materials,flexible thermally conductive films with high in-plane thermal conductivity,as emerging candidates,have aroused greater interest in the last decade,which show great potential in thermal management applications of next-generation devices.However,a comprehensive review of flexible thermally conductive films is rarely reported.Thus,we review recent advances of both intrinsic polymer films and polymer-based composite films with ultrahigh in-plane thermal conductivity,with deep understandings of heat transfer mechanism,processing methods to enhance thermal conductivity,optimization strategies to reduce interface thermal resistance and their potential applications.Lastly,challenges and opportunities for the future development of flexible thermally conductive films are also discussed. 展开更多
关键词 Thermal conductivity Flexible thermally conductive films Heat transfer mechanism interface thermal resistance Thermal management applications
下载PDF
Burn-resistant behavior and mechanism of Ti14 alloy 被引量:3
4
作者 Yong-nan Chen Ya-zhou Huo +3 位作者 Xu-ding Song Zhao-zhao Bi Yang Gao Yong-qing Zhao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第2期215-221,共7页
The direct-current simulation burning method was used to investigate the burn-resistant behavior of Ti14 titanium alloy.The results show that Ti14 alloy exhibits a better burn resistance than TC4 alloy(Ti-6A1-4V).Cu... The direct-current simulation burning method was used to investigate the burn-resistant behavior of Ti14 titanium alloy.The results show that Ti14 alloy exhibits a better burn resistance than TC4 alloy(Ti-6A1-4V).Cu is observed to preferentially migrate to the surface of Ti14 alloy during the burning reaction,and the burned product contains Cu,Cu2O,and TiO2.An oxide layer mainly comprising loose TiO2 is observed beneath the burned product.Meanwhile,Ti2Cu precipitates at grain boundaries near the interface of the oxide layer,preventing the contact between O2 and Ti and forming a rapid diffusion layer near the matrix interface.Consequently,a multiple-layer structure with a Cu-enriched layer(burned product)/Cu-lean layer(oxide layer)/Cu-enriched layer(rapid diffusion layer) configuration is formed in the burn heat-affected zone of Ti14 alloy;this multiple-layer structure is beneficial for preventing O2 diffusion.Furthermore,although A1 can migrate to form A12O3 on the surface of TC4 alloy,the burn-resistant ability of TC4 is unimproved because the Al2O3 is discontinuous and not present in sufficient quantity. 展开更多
关键词 titanium alloys interface morphology burn resistance
下载PDF
Catalytic anode surface enabling in situ polymerization of gel polymer electrolyte for stable Li metal batteries
5
作者 Guocheng Li Kang Liang +6 位作者 Yuanjian Li Xiangrui Duan Lin Fu Zhao Cai Zhaofu Zhang Jiangnan Dai Yongming Sun 《Nano Research》 SCIE EI CSCD 2024年第6期5216-5223,共8页
Employing quasi-solid-state gel polymer electrolyte(GPE)instead of the liquid counterpart has been regarded as a promising strategy for improving the electrochemical performance of Li metal batteries.However,the poor ... Employing quasi-solid-state gel polymer electrolyte(GPE)instead of the liquid counterpart has been regarded as a promising strategy for improving the electrochemical performance of Li metal batteries.However,the poor and uneven interfacial contact between Li metal anode and GPE could cause large interfacial resistance and electrochemical Li stripping/plating inhomogeneity,deteriorating the electrochemical performance.Herein,we proposed that the functional component of composite anode could work as the catalyst to promote the in situ polymerization reaction,and we experimentally realized the integration of polymerized-dioxolane electrolyte and Li/Li_(22)Sn_(5)/LiF composite electrode with low interfacial resistance and good stability by in situ catalyzation polymerization.Thus,the reaction kinetics and stability of metallic Li anode were significantly enhanced.As a demonstration,symmetric cell using such a GPE-Li/Li_(22)Sn_(5)/LiF integration achieved stable cycling beyond 250 cycles with small potential hysteresis of 25 mV at 1 mA·cm^(−2)and 1 mAh·cm^(−2),far outperforming the counterpart regular GPE on pure Li.Paired with LiNi0.5Co0.3Mn0.2O2,the full cell with the GPE-Li/Li_(22)Sn_(5)/LiF integration maintained 85.7%of the original capacity after 100 cycles at 0.5 C(1 C=200 mA·g^(−1)).Our research provides a promising strategy for reducing the resistance between GPE and Li metal anode,and realizes Li metal batteries with enhance electrochemical performance. 展开更多
关键词 catalyzation polymerization interface resistance interfacial stability Li metal batteries electrochemical performance
原文传递
A lithium–tin fluoride anode enabled by ionic/electronic conductive paths for garnet-based solid-state lithium metal batteries
6
作者 Lei Zhang Qian-Kun Meng +8 位作者 Xiang-Ping Feng Ming Shen Yu-Qing Zhang Quan-Chao Zhuang Run-Guo Zheng Zhi-Yuan Wang Yan-Hua Cui Hong-Yu Sun Yan-Guo Liu 《Rare Metals》 SCIE EI CAS CSCD 2024年第2期575-587,共13页
The high energy density and stability of solid-state lithium metal batteries(SSLMBs)have garnered great attention.Garnet-type oxides,especially Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO),with high ionic conductivity,... The high energy density and stability of solid-state lithium metal batteries(SSLMBs)have garnered great attention.Garnet-type oxides,especially Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO),with high ionic conductivity,wide electrochemical window,and stability to Li metal anode,are promising solid-state electrolyte(SSEs)materials for SSLMBs.However,Li/LLZTO interface issues including high interface resistance,inhomogeneous Li deposition,and Li dendrite growth have hindered the practical application of SSLMBs.Herein,a multi-functional Li–SnF_(2) composite anode with Li,LiF,and Li-Sn alloy was specifically designed and prepared.The composite anode improves the wettability to LLZTO,constructing an intimate contact interface between it and LLZTO.Meanwhile,ionic/electronic conductive paths in situ formed at the interface can effectively uniform Li deposition and suppress Li dendrite.The solid-state symmetric cell exhibits low interface resistance(11Ω·cm^(2)) and high critical current density(1.3 mA·cm^(−2))at 25℃.The full SSLMB based on LiFePO_(4) or LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2) cathode also shows stable cycling performance and high rate capability.This work provides a new composite anode strategy for achieving high-energy density and high-safety SSLMBs. 展开更多
关键词 Solid-state lithium metal batteries(SSLMBs) Lithium-tin fluoride anode Ionic/electronic conductive interface resistance Lithium dendrite
原文传递
Phase orientation improved the corrosion resistance and conductivity of Cr_(2)AlC coatings for metal bipolar plates 被引量:2
7
作者 Guanshui Ma Dong Zhang +4 位作者 Peng Guo Hao Li Yang Xin Zhenyu Wang Aiying Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第10期36-44,共9页
In view of the M_(n+1)AX_(n)(MAX)phase coatings benefting the adaptive passivation flm for good corrosion resistance and high electronic density of states for excellent electrical conductivity,here,we reported the Cr_... In view of the M_(n+1)AX_(n)(MAX)phase coatings benefting the adaptive passivation flm for good corrosion resistance and high electronic density of states for excellent electrical conductivity,here,we reported the Cr_(2)Al C MAX phase coatings with different preferred orientations by a homemade technique consisting of vacuum arc and magnetron sputtering.The dependence of surface and interface microstructural evolution upon the corrosion and electrochemical properties of deposited coating was focused.Results showed that all the Cr_(2)Al C coatings with different phase orientations greatly improved the performance of stainless steel(SS)316 L substrate.Specifcally,the lowest value of interface contact resistance(ICR)reached to 3.16 mΩcm^(2)and the lowest corrosion current density was 2×10^(-2)μA cm^(-2),which were much better than those of bare SS316L.The combined studies of electrochemical properties and theoretical calculations demonstrated that the Cr_(2)Al C coatings with preferred(103)orientation were easier to form oxide passivation flm on their surface to increase the corrosion resistance. 展开更多
关键词 M_(n+1)AX_(n)phase coating Metal bipolar plate interface contact resistance Corrosion resistance
原文传递
Simultaneous manipulations of thermal expansion and conductivity in symbiotic ScTaO_(4)/SmTaO_(4) composites via multiscale effects
8
作者 Lin Chen Jiankun Wang +2 位作者 Baihui Li Keren Luo Jing Feng 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2023年第8期1625-1640,共16页
Effective manipulations of thermal expansion and conductivity are significant for improving operational performances of protective coatings,thermoelectric,and radiators.This work uncovers determinant mechanisms of the... Effective manipulations of thermal expansion and conductivity are significant for improving operational performances of protective coatings,thermoelectric,and radiators.This work uncovers determinant mechanisms of the thermal expansion and conductivity of symbiotic ScTaO_(4)/SmTaO_(4) composites as thermal/environmental barrier coatings(T/EBCs),and we consider the effects of interface stress and thermal resistance.The weak bonding and interface stress among composite grains manipulate coefficient of thermal expansion(CTE)stretching from 6.4×10^(−6) to 10.7×10^(−6) K^(−1) at 1300℃,which gets close to that of substrates in T/EBC systems.The multiscale effects,including phonon scattering at the interface,mitigation of the phonon speed(vp),and lattice point defects,synergistically depress phonon thermal transports,and we estimate the proportions of different parts.The interface thermal resistance(R)reduces the thermal conductivity(k)by depressing phonon speed and scattering phonons because of different acoustic properties and weak bonding between symbiotic ScTaO_(4) and SmTaO_(4) ceramics in the composites.This study proves that CTE of tantalates can be artificially regulated to match those of different substrates to expand their applications,and the uncovered multiscale effects can be used to manipulate thermal transports of various materials. 展开更多
关键词 thermal management coefficient of thermal expansion(CTE) interface thermal resistance(R) thermal stress(σ) thermal/environmental barrier coatings(T/EBCs)
原文传递
Advances of CNT-based systems in thermal management 被引量:1
9
作者 Wei Yu Changhong Liu Shoushan Fan 《Nano Research》 SCIE EI CSCD 2021年第8期2471-2490,共20页
Effective thermal management has become extremely urgent for electronics due to the massive heat originated from the ever-rising power density.With the merits of high thermal conductivity,good chemical stability and d... Effective thermal management has become extremely urgent for electronics due to the massive heat originated from the ever-rising power density.With the merits of high thermal conductivity,good chemical stability and desirable mechanical properties,carbon nanotubes(CNTs)are considered to have great potential to be widely used in heat dissipation devices.This article describes the progress on thermal conductivity of CNT-reinforced composites,aligned CNT materials(aligned CNT arrays,films/buckypapers and fibers)as high thermal conductors,experimental and theoretical results of CNT-substrate interface resistance,and utilizations of CNTs in the passive heat dissipation(natural convection,heat radiation,and phase-change heat transfer).Finally,the challenges and prospects are discussed to provide some hints in the future studies.It is believed that CNTs can play an important role in thermal management of electronics,especially in the portable electronic devices. 展开更多
关键词 carbon nanotubes thermal management passive heat dissipation thermal interface materials thermal interface resistance
原文传递
A Comprehensive Review on Multi-Dimensional Heat Conduction of Multi-Layer and Composite Structures:Analytical Solutions 被引量:1
10
作者 AMIRI DELOUEI Amin EMAMIAN Amin +5 位作者 SAJJADI Hasan ATASHAFROOZ Meysam LI Yueming WANG Lian-Ping JING Dengwei XIE Gongnan 《Journal of Thermal Science》 SCIE EI CAS CSCD 2021年第6期1875-1907,共33页
Heat conduction in multi-layer and composite materials is one of the fundamental heat transfer problems in many industrial applications.Due to different materials types,interface conditions,and various geometries of t... Heat conduction in multi-layer and composite materials is one of the fundamental heat transfer problems in many industrial applications.Due to different materials types,interface conditions,and various geometries of these laminates,the heat conduction mechanism is more complicated than that of one-layer isotropic media.Analytical solutions are the best ways to study and understand such problems in depth.In this study,different existing analytical solutions for heat conduction in multi-layer and composite materials are reviewed and classified in rectangular,cylindrical,spherical,and conical coordinates.Applied boundary conditions,internal heat source,and thermal contact resistance as the most critical parameters in the solution complexity investigated in the literature,are discussed and summarized in different tables.Various types of multi-layer structures such as isotropic,anisotropic,orthotropic,and reinforced laminates are included in this study.It is found that although more than half a century has passed since the beginning of the research on heat transfer in multi-layer composites,new researches that can help with a better understanding in this area are still being offered.The challenges and shortcomings in this area are also discussed to guide future researches. 展开更多
关键词 multi-dimensional heat conduction composite laminates multi-layer structures analytical solutions interface contact resistance
原文传递
Backgating effect in GaAs FETs with a channel–semi-insulating substrate boundary 被引量:1
11
作者 Ahmed Chaouki Megherbi Said Benramache Abderrazak Guettaf 《Journal of Semiconductors》 EI CAS CSCD 2014年第3期33-38,共6页
This study focuses on modeling the effects of deep hole traps, mainly the effect of the substrate(backgating effect) in a GaAs transistor MESFT. This effect is explained by the existence, at the interface, of a spac... This study focuses on modeling the effects of deep hole traps, mainly the effect of the substrate(backgating effect) in a GaAs transistor MESFT. This effect is explained by the existence, at the interface, of a space charge zone. Any modulation in this area leads to response levels trapping the holes therein to the operating temperature. We subsequently developed a model treating the channel substrate interface as an N–P junction, allowing us to deduce the time dependence of the component parameters of the total resistance R ds, the pinch-off voltage V P, channel resistance, fully open R co and the parasitic series resistance R S to bind the effect trap holes H1and H0. When compared with the experimental results, the values of the R DS(t S/ model for both traps show that there is an agreement between theory and experiment; it has inferred parameter traps, namely the density and the time constant of the trap. This means that a space charge region exists at the channel–substrate interface and that the properties can be approximated to an N–P junction. 展开更多
关键词 traps pinch-off voltage resistance channel substrate interface
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部