The equivalent elastic modulus is a parameter for controlling the deformation behavior of fractured rock masses in the equivalent continuum approach.The confining stress,whose effect on the equivalent elastic modulus ...The equivalent elastic modulus is a parameter for controlling the deformation behavior of fractured rock masses in the equivalent continuum approach.The confining stress,whose effect on the equivalent elastic modulus is of great importance,is the fundamental stress environment of natural rock masses.This paper employs an analytical approach to obtain the equivalent elastic modulus of fractured rock masses containing random discrete fractures(RDFs)or regular fracture sets(RFSs)while considering the confining stress.The proposed analytical solution considers not only the elastic properties of the intact rocks and fractures,but also the geometrical structure of the fractures and the confining stress.The performance of the analytical solution is verified by comparing it with the results of numerical tests obtained using the three-dimensional distinct element code(3DEC),leading to a reasonably good agreement.The analytical solution quantitatively demonstrates that the equivalent elastic modulus increases substantially with an increase in confining stress,i.e.it is characterized by stress-dependency.Further,a sensitivity analysis of the variables in the analytical solution is conducted using a global sensitivity analysis approach,i.e.the extended Fourier amplitude sensitivity test(EFAST).The variations in the sensitivity indices for different ranges and distribution types of the variables are investigated.The results provide an in-depth understanding of the influence of the variables on the equivalent elastic modulus from different perspectives.展开更多
In the present study, the average modulus of delayed ettringite is evaluated by an experimental method combined with theoretical analysis. Firstly, the delayed ettringite crystal is synthesized by chemical reaction of...In the present study, the average modulus of delayed ettringite is evaluated by an experimental method combined with theoretical analysis. Firstly, the delayed ettringite crystal is synthesized by chemical reaction of Aluminum sulfate and calcium hydroxide. Secondly, specimens are obtained by compressing the delayed ettringite crystal under different pre-loads. Thirdly, the variation of the modulus of the specimen with different pre-loads is tested using Instron material test machine and the SHPB technique, respectively. It is found that the experimental data may be suitably fitted by Boltzmann Function. Finally, the porosity of the specimen is detected using the saturation method, and the effect of the porosity on the modulus is analyzed by the Eshelby's equivalent inclusion method and the Mori-Tanaka's scheme. The static and dynamic modulli of the equivalent homogeneous ettringite obtained in present study are approximately 10.64 GPa and 24.61 GPa, respectively.展开更多
Shrinkage porosity is a type of random distribution defects and exists in most large castings. Different from the periodic symmetry defects or certain distribution defects, shrinkage porosity presents a random "c...Shrinkage porosity is a type of random distribution defects and exists in most large castings. Different from the periodic symmetry defects or certain distribution defects, shrinkage porosity presents a random "cloud-like" configuration, which brings difficulties in quantifying the effective performance of defected casting. In this paper, the influences of random shrinkage porosity on the equivalent elastic modulus of QT400-18 casting were studied by a numerical statistics approach. An improved random algorithm was applied into the lattice model to simulate the "cloud-like" morphology of shrinkage porosity. Then, a large number of numerical samples containing random levels of shrinkage were generated by the proposed algorithm. The stress concentration factor and equivalent elastic modulus of these numerical samples were calculated. Based on a statistical approach, the effects of shrinkage porosity's distribution characteristics, such as area fraction, shape, and relative location on the casting's equivalent mechanical properties were discussed respectively. It is shown that the approach with randomly distributed defects has better predictive capabilities than traditional methods. The following conclusions can be drawn from the statistical simulations:(1) the effective modulus decreases remarkably if the shrinkage porosity percent is greater than 1.5%;(2) the average Stress Concentration Factor(SCF) produced by shrinkage porosity is about 2.0;(3) the defect's length across the loading direction plays a more important role in the effective modulus than the length along the loading direction;(4) the surface defect perpendicular to loading direction reduces the mean modulus about 1.5% more than a defect of other position.展开更多
The equivalent elastic modulus of cracked bodies with orderly distributed cracks was computed with the boundary element method. A practical self-consistent scheme has been proposed in consideration of the mutual inter...The equivalent elastic modulus of cracked bodies with orderly distributed cracks was computed with the boundary element method. A practical self-consistent scheme has been proposed in consideration of the mutual interaction effects of the cracks. The Influence of friction coefficients and orientation of cracks has been investigated. Some computational examples have been given, and the results show that the proposed method is adequate and the scheme is efficient.展开更多
To solve the problems of divergence,low accuracy and project application of membrane wrinkling analysis,an analysis method of zero shear modulus and equivalent stiffness was proposed.This method is an improvement to t...To solve the problems of divergence,low accuracy and project application of membrane wrinkling analysis,an analysis method of zero shear modulus and equivalent stiffness was proposed.This method is an improvement to the previous method (Method I) of local coordinate transposition and stiffness equivalence.The new method is derived and the feasibility is theoretically proved.A small-scale membrane structure is analyzed by the two methods,and the results show that the computational efficiency of the new method (Method II) is approximately 23 times that of Method I.When Method II is applied to a large-scale membrane stadium structure,it is found that this new method can quickly make the second principal stress of one way wrinkled elements zero,and make the two principal stresses of two-way wrinkled elements zero as well.It could attain the correct load responses right after the appearance of wrinkled elements,which indicates that Method II can be applied to wrinkling analysis of large-scale membrane structures.展开更多
In this study, we define (f, p)-Asymptotically Lacunary Equivalent Sequences with respect to the ideal I using a non-trivial ideal , a lacunary sequence , a strictly positive sequence , and a modulus function f, and o...In this study, we define (f, p)-Asymptotically Lacunary Equivalent Sequences with respect to the ideal I using a non-trivial ideal , a lacunary sequence , a strictly positive sequence , and a modulus function f, and obtain some revelent connections between these notions.展开更多
Bamendou (West Cameroon), has a huge potential in natural resources, especially sands. However, the use of these materials in civil engineering works leads to the appearance of numerous pathologies which in some cases...Bamendou (West Cameroon), has a huge potential in natural resources, especially sands. However, the use of these materials in civil engineering works leads to the appearance of numerous pathologies which in some cases lead to the total ruin of the works. In order to overcome these infrastructural problems, the main objective of this study is set at the improvement of the service life of structures built in Cameroon using local materials formed under climatic, geological and geotechnical conditions similar to those of materials in Bamendou. Eight sand samples were taken from the most representative and exploited quarries. The identification and classification of the sand taken from the most representative quarries in the study area show that they are mainly clayey, with an average sand equivalent of 57.54. In terms of granulometry, the curves of several sand samples do not fall within the granular range of sands used in the formulation of concrete. The modulus of fineness obtained by particle size analysis varies from 2.91 to 3.92 with an average of 3.31.展开更多
Based on the composite material mechanic theory, the analysis method for the equivalent elastic moduli which are parallel and vertical to the construction interface of RCCD is studied in this paper. The differences be...Based on the composite material mechanic theory, the analysis method for the equivalent elastic moduli which are parallel and vertical to the construction interface of RCCD is studied in this paper. The differences between the equivalent elastic moduli which are vertical to the construction interface of RCCD gotten from different methods are discussed in detail. The variation range of the equivalent elastic modulus which is vertical to the construction interface of RCCD is studied based on the principle of minimum complementary energy and the principle of minimum potential energy. The effect of the related influential factors on the equivalent elastic modulus is analyzed. The estimation formula of the equivalent modulus which is vertical to the construction interface of RCCD is proposed. The feasibility of the approach proposed in this paper is analyzed through an example.展开更多
基金financially supported by the National Nature Science Foundation of China (Grant Nos. 42022053 and 41877220)
文摘The equivalent elastic modulus is a parameter for controlling the deformation behavior of fractured rock masses in the equivalent continuum approach.The confining stress,whose effect on the equivalent elastic modulus is of great importance,is the fundamental stress environment of natural rock masses.This paper employs an analytical approach to obtain the equivalent elastic modulus of fractured rock masses containing random discrete fractures(RDFs)or regular fracture sets(RFSs)while considering the confining stress.The proposed analytical solution considers not only the elastic properties of the intact rocks and fractures,but also the geometrical structure of the fractures and the confining stress.The performance of the analytical solution is verified by comparing it with the results of numerical tests obtained using the three-dimensional distinct element code(3DEC),leading to a reasonably good agreement.The analytical solution quantitatively demonstrates that the equivalent elastic modulus increases substantially with an increase in confining stress,i.e.it is characterized by stress-dependency.Further,a sensitivity analysis of the variables in the analytical solution is conducted using a global sensitivity analysis approach,i.e.the extended Fourier amplitude sensitivity test(EFAST).The variations in the sensitivity indices for different ranges and distribution types of the variables are investigated.The results provide an in-depth understanding of the influence of the variables on the equivalent elastic modulus from different perspectives.
基金supported by the National Basic Research Program of China(973 Program,2009CB623203)the National Nature Science Foundation of China(Nos.10572064 and 10802039)+1 种基金Natural Science Foundation of Zhejiang Province (No.Y107780)K.C.Wong Magna Fund in Ningbo University.
文摘In the present study, the average modulus of delayed ettringite is evaluated by an experimental method combined with theoretical analysis. Firstly, the delayed ettringite crystal is synthesized by chemical reaction of Aluminum sulfate and calcium hydroxide. Secondly, specimens are obtained by compressing the delayed ettringite crystal under different pre-loads. Thirdly, the variation of the modulus of the specimen with different pre-loads is tested using Instron material test machine and the SHPB technique, respectively. It is found that the experimental data may be suitably fitted by Boltzmann Function. Finally, the porosity of the specimen is detected using the saturation method, and the effect of the porosity on the modulus is analyzed by the Eshelby's equivalent inclusion method and the Mori-Tanaka's scheme. The static and dynamic modulli of the equivalent homogeneous ettringite obtained in present study are approximately 10.64 GPa and 24.61 GPa, respectively.
基金supported by the National Natural Science Foundation of China(Grant No.51305350)the Basic Research Foundation of NWPU(No.3102014JCQ01045)
文摘Shrinkage porosity is a type of random distribution defects and exists in most large castings. Different from the periodic symmetry defects or certain distribution defects, shrinkage porosity presents a random "cloud-like" configuration, which brings difficulties in quantifying the effective performance of defected casting. In this paper, the influences of random shrinkage porosity on the equivalent elastic modulus of QT400-18 casting were studied by a numerical statistics approach. An improved random algorithm was applied into the lattice model to simulate the "cloud-like" morphology of shrinkage porosity. Then, a large number of numerical samples containing random levels of shrinkage were generated by the proposed algorithm. The stress concentration factor and equivalent elastic modulus of these numerical samples were calculated. Based on a statistical approach, the effects of shrinkage porosity's distribution characteristics, such as area fraction, shape, and relative location on the casting's equivalent mechanical properties were discussed respectively. It is shown that the approach with randomly distributed defects has better predictive capabilities than traditional methods. The following conclusions can be drawn from the statistical simulations:(1) the effective modulus decreases remarkably if the shrinkage porosity percent is greater than 1.5%;(2) the average Stress Concentration Factor(SCF) produced by shrinkage porosity is about 2.0;(3) the defect's length across the loading direction plays a more important role in the effective modulus than the length along the loading direction;(4) the surface defect perpendicular to loading direction reduces the mean modulus about 1.5% more than a defect of other position.
基金the National Natural Science Foundation of China
文摘The equivalent elastic modulus of cracked bodies with orderly distributed cracks was computed with the boundary element method. A practical self-consistent scheme has been proposed in consideration of the mutual interaction effects of the cracks. The Influence of friction coefficients and orientation of cracks has been investigated. Some computational examples have been given, and the results show that the proposed method is adequate and the scheme is efficient.
基金Project(020940) supported by the Natural Science Foundation of Guangdong Province,China
文摘To solve the problems of divergence,low accuracy and project application of membrane wrinkling analysis,an analysis method of zero shear modulus and equivalent stiffness was proposed.This method is an improvement to the previous method (Method I) of local coordinate transposition and stiffness equivalence.The new method is derived and the feasibility is theoretically proved.A small-scale membrane structure is analyzed by the two methods,and the results show that the computational efficiency of the new method (Method II) is approximately 23 times that of Method I.When Method II is applied to a large-scale membrane stadium structure,it is found that this new method can quickly make the second principal stress of one way wrinkled elements zero,and make the two principal stresses of two-way wrinkled elements zero as well.It could attain the correct load responses right after the appearance of wrinkled elements,which indicates that Method II can be applied to wrinkling analysis of large-scale membrane structures.
文摘In this study, we define (f, p)-Asymptotically Lacunary Equivalent Sequences with respect to the ideal I using a non-trivial ideal , a lacunary sequence , a strictly positive sequence , and a modulus function f, and obtain some revelent connections between these notions.
文摘Bamendou (West Cameroon), has a huge potential in natural resources, especially sands. However, the use of these materials in civil engineering works leads to the appearance of numerous pathologies which in some cases lead to the total ruin of the works. In order to overcome these infrastructural problems, the main objective of this study is set at the improvement of the service life of structures built in Cameroon using local materials formed under climatic, geological and geotechnical conditions similar to those of materials in Bamendou. Eight sand samples were taken from the most representative and exploited quarries. The identification and classification of the sand taken from the most representative quarries in the study area show that they are mainly clayey, with an average sand equivalent of 57.54. In terms of granulometry, the curves of several sand samples do not fall within the granular range of sands used in the formulation of concrete. The modulus of fineness obtained by particle size analysis varies from 2.91 to 3.92 with an average of 3.31.
基金Supported by the National Natural Science Foundation of China (Grant No. 50579010)National Natural Science Foundation Key Project (Grant Nos. 50539010, 50539110, 50539030)+2 种基金National Science and Technology Support Plan (Grant No. 2006BAC14B03) "948" Project of Ministry of Water Resources (Grant No. CT200612)"973" Program (Grant No. 2002CB412707)
文摘Based on the composite material mechanic theory, the analysis method for the equivalent elastic moduli which are parallel and vertical to the construction interface of RCCD is studied in this paper. The differences between the equivalent elastic moduli which are vertical to the construction interface of RCCD gotten from different methods are discussed in detail. The variation range of the equivalent elastic modulus which is vertical to the construction interface of RCCD is studied based on the principle of minimum complementary energy and the principle of minimum potential energy. The effect of the related influential factors on the equivalent elastic modulus is analyzed. The estimation formula of the equivalent modulus which is vertical to the construction interface of RCCD is proposed. The feasibility of the approach proposed in this paper is analyzed through an example.