The metallurgical quality control of magnesium(Mg)and Mg alloys in melting process is required to ensure a satisfied mechanical and corrosion performance,while the typical used steel crucible introduces impurities and...The metallurgical quality control of magnesium(Mg)and Mg alloys in melting process is required to ensure a satisfied mechanical and corrosion performance,while the typical used steel crucible introduces impurities and interfacial interaction during melting process.Therefore,a systematic study about impurities diffusion and interfacial interaction between molten Mg and steel is necessary.In the present study,the interfacial reaction between molten AZ91D Mg alloy and mild steel during melting process was investigated with the melting temperatures of 700℃,750℃ and 800℃.The results show that Al(Fe,Mn)intermetallic layer is the intermetallic primarily formed at the interfaces of AZ91D melt and mild steel.Meanwhile,Al_(8)(Mn,Fe)5is indexed between Al(Fe,Mn)and AZ91D.AlFe_(3)C appears between the mild steel and Al(Fe,Mn)at 700℃ and 750℃,but absent at 800℃ due to the increased solubility of carbon in Mg matrix.It is found that the growth of the intermetallic layer is controlled by diffusion mechanism,and Al and Mn are the dominant diffusing species in the whole interfacial reaction process.By measuring the thickness of different layers,the growth constant was calculated.It increases from 1.89(±0.03)×10^(-12)m^(2)·s^(-1)at 700℃ to 3.05(±0.05)×10^(-12)m^(2)·s^(-1)at 750℃,and 5.18(±0.05)×10^(-12)m^(2)·s^(-1)at 800℃.Meanwhile,the content of Fe is linearly increased in AZ91D with the increase of holding time at 700℃ and 750℃,while it shows a significantly increment after holding for 8 h at 800℃,indicating holding temperature is more crucial to determine the Fe content of AZ91D than holding time.展开更多
The shock-induced reaction mechanism and characteristics of Ni/Al system,considering an Al nanoparticle-embedded Ni single crystal,are investigated through molecular dynamics simulation.For the shock melting of Al nan...The shock-induced reaction mechanism and characteristics of Ni/Al system,considering an Al nanoparticle-embedded Ni single crystal,are investigated through molecular dynamics simulation.For the shock melting of Al nanoparticle,interfacial crystallization and dissolution are the main characteristics.The reaction degree of Al particle first increases linearly and then logarithmically with time driven by rapid mechanical mixing and following dissolution.The reaction rate increases with the decrease of particle diameter,however,the reaction is seriously hindered by interfacial crystallization when the diameter is lower than 9 nm in our simulations.Meanwhile,we found a negative exponential growth in the fraction of crystallized Al atoms,and the crystallinity of B2-NiAl(up to 20%)is positively correlated with the specific surface area of Al particle.This can be attributed to the formation mechanism of B2-NiAl by structural evolution of finite mixing layer near the collapsed interface.For shock melting of both Al particle and Ni matrix,the liquid-liquid phase inter-diffusion is the main reaction mechanism that can be enhanced by the formation of internal jet.In addition,the enhanced diffusion is manifested in the logarithmic growth law of mean square displacement,which results in an almost constant reaction rate similar to the mechanical mixing process.展开更多
Interfacial water molecules are the most important participants in the hydrogen evolution reaction(HER).Hence,understanding the behavior and role that interfacial water plays will ultimately reveal the HER mechanism.U...Interfacial water molecules are the most important participants in the hydrogen evolution reaction(HER).Hence,understanding the behavior and role that interfacial water plays will ultimately reveal the HER mechanism.Unfortunately,investigating interfacial water is extremely challenging owing to the interference caused by bulk water molecules and complexity of the interfacial environment.Here,the behaviors of interfacial water in different cationic electrolytes on Pd surfaces were investigated by the electrochemistry,in situ core-shell nanostructure enhanced Raman spectroscopy and theoretical simulation techniques.Direct spectral evidence reveals a red shift in the frequency and a decrease in the intensity of interfacial water as the potential is shifted in the positively direction.When comparing the different cation electrolyte systems at a given potential,the frequency of the interfacial water peak increases in the specified order:Li+<Na^(+)<K^(+)<Ca^(2+)<Sr^(2+).The structure of interfacial water was optimized by adjusting the radius,valence,and concentration of cation to form the two-H down structure.This unique interfacial water structure will improve the charge transfer efficiency between the water and electrode further enhancing the HER performance.Therefore,local cation tuning strategies can be used to improve the HER performance by optimizing the interfacial water structure.展开更多
The method to combine thermoelectric(TE)and magnetocaloric(MC)cooling techniques lies in developing a new material that simultaneously possesses a large TE and good MC cooling performance.In this work,using n-type Bi_...The method to combine thermoelectric(TE)and magnetocaloric(MC)cooling techniques lies in developing a new material that simultaneously possesses a large TE and good MC cooling performance.In this work,using n-type Bi_(2)Te_(2.7)Se_(0.3)(BTS)as the TE base material and Gd as the second-phase MC material,Gd/BTS composites were prepared by the spark plasma sintering method.In the composites,interfacial reaction between Gd and BTS was identified,resulting in the formation of Gd Te,which has a large impact on the electron concentration through the adjustment of defect concentration.The MC/TE composite containing 2.5 wt%Gd exhibited a ZT value of 0.6 at 300 K,essentially retaining the original TE performance,while all the composites largely maintained the excellent MC performance of Gd.This work provides a potential pathway to achieving high performance in MC/TE composites.展开更多
Precisely tailoring the surface electronic structures of electrocatalysts for optimal hydrogen binding energy and hydroxide binding energy is vital to improve the sluggish kinetics of hydrogen oxidation reac-tion(HOR)...Precisely tailoring the surface electronic structures of electrocatalysts for optimal hydrogen binding energy and hydroxide binding energy is vital to improve the sluggish kinetics of hydrogen oxidation reac-tion(HOR).Herein,we employ a partial desulfurization strategy to construct a homologous Ru-RuS_(2) heterostructure anchored on hollow mesoporous carbon nanospheres(Ru-RuS_(2)@C).The disparate work functions of the heterostructure contribute to the spontaneous formation of a unique built-in electric field,accelerating charge transfer and boosting conductivity of electrocatalyst.Consequently,Ru-RuS_(2)@C exhibits robust HOR electrocatalytic activity,achieving an exchange current density and mass activity as high as 3.56 mA cm^(-2) and 2.13 mAμg_(Ru)^(-1),respectively.exceeding those of state-of-the-art Pt/C and most contemporary Ru-based HOR electrocatalysts.Surprisingly,Ru-RuS_(2)@C can tolerate 1000 ppm of cO that lacks in Pt/C.Comprehensive analysis reveals that the directional electron transfer across Ru-RuS_(2) heterointerface induces local charge redistribution in interfacial region,which optimizes and balances the adsorption energies of H and OH species,as well as lowers the energy barrier for water formation,thereby promoting theHoR performance.展开更多
The interfacial reaction behavior of Al and Ti_(3)AlC_(2)at different pouring temperatures and its effect on the microstructure and mechanical properties of the composites were investigated.The results show that the a...The interfacial reaction behavior of Al and Ti_(3)AlC_(2)at different pouring temperatures and its effect on the microstructure and mechanical properties of the composites were investigated.The results show that the addition of3.0 wt.%Ti_(3)AlC_(2)refines the average grain size ofα(Al)in the composite by 50.1%compared to Al6061 alloy.Morphological analyses indicate that an in-situ Al_(3Ti)transition layer of-180 nm in thickness is generated around the edge of Ti_(3)AlC_(2)at 720℃,forming a well-bonded Al-Al_(3Ti)interface.At this processing temperature,the ultimate tensile strength of A16061-3.0 wt.%Ti_(3)AlC_(2)composite is 199.2 MPa,an improvement of 41.5%over the Al6061 matrix.Mechanism analyses further elucidate that 720℃is favourable for forming the nano-sized transition layer at the Ti_(3)AlC_(2)edges.And,the thermal mismatch strengthening plays a dominant role in this state,with a strengthening contribution of about 74.8%.展开更多
Pt-based nanocatalysts offer excellent prospects for various industries.However,the low loading of Pt with excellent performance for efficient and stable nanocatalysts still presents a considerable challenge.In this s...Pt-based nanocatalysts offer excellent prospects for various industries.However,the low loading of Pt with excellent performance for efficient and stable nanocatalysts still presents a considerable challenge.In this study,nanocatalysts with ultralow Pt content,excellent performance,and carbon black as support were prepared through in-situ synthesis.These~2-nm particles uniformly and stably dispersed on carbon black because of the strong s-p-d orbital hybridizations between carbon black and Pt,which suppressed the agglomeration of Pt ions.This unique structure is beneficial for the hydrogen evolution reaction.The catalysts exhibited remarkable catalytic activity for hydrogen evolution reaction,exhibiting a potential of 100 mV at 100 mA·cm^(-2),which is comparable to those of commercial Pt/C catalysts.Mass activity(1.61 A/mg)was four times that of a commercial Pt/C catalyst(0.37 A/mg).The ultralow Pt loading(6.84wt%)paves the way for the development of next-generation electrocatalysts.展开更多
Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal int...Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units,the d-orbital and electronic structures can be adjusted,which is an important strategy to achieve sufficient oxygen evolution reaction(OER)performance in AEMWEs.Herein,the ternary NiFeM(M:La,Mo)catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work.Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen,resulting in enhanced adsorption strength of oxygen intermediates,and reduced rate-determining step energy barrier,which is responsible for the enhanced OER performance.More critically,the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm^(−2) in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h.展开更多
Ti-1100 alloys were melted in a controlled atmospheric induction furnace equipped with a Ca O crucible. The microstructure, chemical composition, microhardness and metal-crucible interfacial reactions were systematica...Ti-1100 alloys were melted in a controlled atmospheric induction furnace equipped with a Ca O crucible. The microstructure, chemical composition, microhardness and metal-crucible interfacial reactions were systematically investigated. The results demonstrate that the primary solidification microstructure in the as-cast alloys was the typical Widmansttten structure. The interactions between crucible and molten alloys are attributed to slight chemical dissolution and weak physical erosion. According to the line scanning analysis, the interfacial layer(α-case) thicknesses of Ti-1100 samples in the bottom and side wall are about 18 and 17 μm, respectively, which are slightly lower than those presented from microhardness tests(25 and 20 μm). The formation of α-case was caused by interstitial oxygen atoms. The standard Gibbs energy of reaction Ca O(s)=Ca+O for Ti-1100 alloy was also determined. The equilibrium constant and the interaction parameter between calcium and oxygen were obtained as lg K=-3.14 and eCa O =-3.54.展开更多
The SiC/A356/FeNi50 composite was fabricated by gas pressure infiltration. The interfacial region of the SiC/A356/FeNi50 composite consisted of FeNi50 reaction layer, A1 reaction layer and A1 alloy matrix. The main in...The SiC/A356/FeNi50 composite was fabricated by gas pressure infiltration. The interfacial region of the SiC/A356/FeNi50 composite consisted of FeNi50 reaction layer, A1 reaction layer and A1 alloy matrix. The main intermetallic compounds were (Fe,Ni)a(A1,Sih3 and (Fe,Ni)2(A1,Si)5 at the A1 reaction layer and FeNi50 reaction layer, respectively. The bending behavior versus different infiltration temperatures and holding times was also investigated. The bending strength at 670 ~C was the highest and close to the bending strength of A1 alloy (223 MPa), and 46% of SIC/A356. The brittle intermetallic compounds existing at the interface induced the decreasing of the bending strength. The pores were reduced by adequate heating time due to the homogeneous temperature of preform, which was beneficial to improve the bending strength of the composite.展开更多
Bonding of SiC to SiC using Ni and Ni - 25at%Cr foils was performed at high temperature.Interface structures and reaction phases were investigated by EPMA analyses and XRD diffraction method, re- spectively. At a bon...Bonding of SiC to SiC using Ni and Ni - 25at%Cr foils was performed at high temperature.Interface structures and reaction phases were investigated by EPMA analyses and XRD diffraction method, re- spectively. At a bonding temperature of 1273K Ni reacts with SiC and forms various Ni silicides con- taining graphite baside SiC. Ni3Si without graphite was formed at Ni side.The interface structure of SiC/Ni joint was SiC/Ni2Si + C/Ni31 Si12 + G/Ni3 Si/Ni. At the interface between SiC and Ni- 25at%Cr alloy the Ni silicide was only Ni2Si at the same bonding temperature,and further(Cr, Ni)7 (Si, C)3 carbide was formed between Ni silicide + graphite zone and Ni - 25at%Cr alloy.The interface structure of SiC/Ni - 25at%Cr alloy was SiC/Ni2Si + C/(Cr, Ni)7 (Si, C)3+Ni(ss. Cr, Si)/Ni - 25at%Cr.展开更多
Ni/Sn couples, prepared by sequentially electroplating Ni layers and Sn layers on metallized Si wafers, were employed to study the microstructures and growth kinetics of Ni-Sn intermediate phases, when the Ni/Sn coupl...Ni/Sn couples, prepared by sequentially electroplating Ni layers and Sn layers on metallized Si wafers, were employed to study the microstructures and growth kinetics of Ni-Sn intermediate phases, when the Ni/Sn couples were aged at room temperature or armealed at temperatures from 150 to 225℃ for various times. The results show that the NiSn phase and Ni3Sn4 phase are formed, respectively, in the aged couples and annealed couples. The Ni3Sn4 layer is continuously distributed between the Ni and Sn sides in the annealed Ni/Sn couples. The Ni3Sn4 growth follows parabolic growth kinetics with an apparent activation energy of 39.0 kJ/mol.展开更多
In order to evaluate the interfacial reaction, a SiCf/Ti (TA1) composite was fabricated by a vacuum hot pressing method and then heat-treated in vacuum at 800℃ for up to 100 h. The elemental distributions of C, Si an...In order to evaluate the interfacial reaction, a SiCf/Ti (TA1) composite was fabricated by a vacuum hot pressing method and then heat-treated in vacuum at 800℃ for up to 100 h. The elemental distributions of C, Si and Ti at the interfacial reaction zone were investigated. It was found that the reaction zone occurs during the fabrication process and continuously grows at high temperature because the Si and C atoms diffuse from SiC fibers to the matrix and Ti atoms diffuse in the opposite direction. The growth of the reaction zone is diffusion controlled and the mechanism of the reaction can be described by a reactive diffusion model of solid-state growth of an AmBn layer between two elementary substances A and B.展开更多
Continuous SiC fiber reinforced copper matrix (SiC~/Cu) composites were prepared by fiber coating method, and Ti6A14V interlayer was introduced as an interfacial modification coating to improve the interfacial bondi...Continuous SiC fiber reinforced copper matrix (SiC~/Cu) composites were prepared by fiber coating method, and Ti6A14V interlayer was introduced as an interfacial modification coating to improve the interfacial bonding strength. The interfacial reaction characteristics were investigated by transmission electron microscopy (TEM). The results show that nearly all the titanium atoms reacted with the carbon coating of SiC fibers to form two layers of TiC. Also, a thin copper layer that is sandwiched between these two layers was detected. No Ti-Cu interfacial reaction product was observed. The formation process of the interfacial reaction along with its mechanism was discussed.展开更多
A slight interfacial reaction in squeeze-cast SiCp/6061AI composites has been studied. It is found that this kind of reaction has a particular effect on the mechanical properties of the composites. The results of fie-...A slight interfacial reaction in squeeze-cast SiCp/6061AI composites has been studied. It is found that this kind of reaction has a particular effect on the mechanical properties of the composites. The results of fie-cure tests show that this reaction in the composites obviously increases the elastic properties, but is not beneficial to the fracture strength and ductility.This phenomenon can be interpreted in terms of two different micromechanisms which have been analyzed using TEM and HREM observations, acoustic emission (AE) technique and SEM fractography. In addition, a new method of SiC surface modification which can control the interface state is initially presented.展开更多
Featured with high power density,improved safety and low-cost,rechargeable aqueous zinc-ion batteries(ZIBs) have been revived as possible candidates for sustainable energy storage systems in recent years.However,the c...Featured with high power density,improved safety and low-cost,rechargeable aqueous zinc-ion batteries(ZIBs) have been revived as possible candidates for sustainable energy storage systems in recent years.However,the challenges inherent in zinc(Zn) anode,namely dendrite formation and interfacial parasitic reactions,have greatly impeded their practical application.Whereas the critical issue of dendrite formation has attracted widespread concern,the parasitic reactions of Zn anodes with mildly acidic electrolytes have received very little attentions.Considering that the low Zn reversibility that stems from interfacial parasitic reactions is the major obstacle to the commercialization of ZIBs,thorough understanding of these side reactions and the development of correlative inhibition strategies are significant.Therefore,in this review,the brief fundamentals of corrosion and hydrogen evolution reactions at Zn surface is presented.In addition,recent advances and research efforts addressing detrimental side reactions are reviewed from the perspective of electrode design,electrode-electrolyte interfacial engineering and electrolyte modification.To facilitate the future researches on this aspect,perspectives and suggestions for relevant investigations are provided lastly.展开更多
Mo foil (10 -20 μm in thickness) and Al foil (20 -60 μLm in thickness) were vacuum diffusion bonded at 600 - 640 ~C under 20 MPa for 54 min - 6 h. The joints were examined by scanning electron microscopy (SEM)...Mo foil (10 -20 μm in thickness) and Al foil (20 -60 μLm in thickness) were vacuum diffusion bonded at 600 - 640 ~C under 20 MPa for 54 min - 6 h. The joints were examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) to study the evolution mechanism of the reaction layers. The results show that Al atoms diffuse into Mo grain boundaries and form reaction products as Mo3Al8, MoAl4 , MoAl5 and MoAl12. The surface oxide film is eroded by the growths of the reaction products that plow into the lamellar texture of Mo grain boundaries. Mo3Al8 layer grows by "taking root" downwards and transforms into MoAl4 and MoAl5 phases upwards by absorbing Al atoms. MoAl12 layer grows up from MoAl5 layer in the same way. When the supplement of Al atoms ceases, MoAl12 transforms reversely into MoAl5 and MoAl5 into MoAl4 via the loss of Al atoms. However, MoAl4 continues to precipitate from Mo3Als layer. At last, there are MoAl4 and Mo3Al8 remained on the joint interface.展开更多
For aqueous interfacial reactions involving H+and OH-, the interfacial pH varies dynamically during the reaction process, which is a key factor determining the reaction performance. Herein, the kinetic relevance betwe...For aqueous interfacial reactions involving H+and OH-, the interfacial pH varies dynamically during the reaction process, which is a key factor determining the reaction performance. Herein, the kinetic relevance between the interfacial pH and reaction rate is deciphered owing to the success in establishing the transport equations of H+/OH- in unbuffered solutions, and is charted as a current(j)–pH diagram in the form of an electrochemical response. The as-described j–pH interplay is experimentally verified by the oxygen reduction and hydrogen evolution reactions. This diagram serves to form a panoramic graphic view of pH function working on the interfacial reactions in conjunction with the Pourbaix’s potential–pH diagram, and particularly enables a kinetic understanding of the transport effect of H+and OH-on the reaction rate and valuable instruction toward associated pH control and buffering manipulation.展开更多
The effects of different Bi contents on the properties of Sn solders were studied. The interfacial reaction and growth behavior of intermetallic compounds(IMCs) layer(η-Cu6 Sn5 + e-Cu3 Sn) for various soldering t...The effects of different Bi contents on the properties of Sn solders were studied. The interfacial reaction and growth behavior of intermetallic compounds(IMCs) layer(η-Cu6 Sn5 + e-Cu3 Sn) for various soldering time and the influence of Bi addition on the thermal behavior of Sn-x Bi solder alloys were investigated. The Cu6 Sn5 IMC could be observed as long as the molten solder contacted with the Cu substrate. However, with the longer welding time such as 60 and 300 s, the Cu3 Sn IMC was formed at the interface between Cu6 Sn5 and Cu substrate. With the increase of soldering time, the thickness of total IMCs increased, meanwhile, the grain size of Cu6 Sn5 also increased. An appropriate amount of Bi element was beneficial for the growth of total IMCs,but excessive Bi(≥ 5 wt%) inhibited the growth of Cu6 Sn5 and Cu3 Sn IMC in Sn-x Bi/Cu microelectronic interconnects. Furthermore, with the Bi contents increasing(Sn-10 Bi solder in this present investigation), some Bi particles accumulated at the interface between Cu6 Sn5 layer and the solder.展开更多
基金supported by the Natural Science Foundation of Chongqing,China(Grant Nos.cstc2020jcyj-msxm X0544,CSTB2022NSCQ-MSX0352,CSTB2022NSCQ-MSX0891,cstc2020jcyj-msxm X0184)Scientific and Technological Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202001416)National Natural Science Foundation of China(Grant Nos.11847077,52001028)。
文摘The metallurgical quality control of magnesium(Mg)and Mg alloys in melting process is required to ensure a satisfied mechanical and corrosion performance,while the typical used steel crucible introduces impurities and interfacial interaction during melting process.Therefore,a systematic study about impurities diffusion and interfacial interaction between molten Mg and steel is necessary.In the present study,the interfacial reaction between molten AZ91D Mg alloy and mild steel during melting process was investigated with the melting temperatures of 700℃,750℃ and 800℃.The results show that Al(Fe,Mn)intermetallic layer is the intermetallic primarily formed at the interfaces of AZ91D melt and mild steel.Meanwhile,Al_(8)(Mn,Fe)5is indexed between Al(Fe,Mn)and AZ91D.AlFe_(3)C appears between the mild steel and Al(Fe,Mn)at 700℃ and 750℃,but absent at 800℃ due to the increased solubility of carbon in Mg matrix.It is found that the growth of the intermetallic layer is controlled by diffusion mechanism,and Al and Mn are the dominant diffusing species in the whole interfacial reaction process.By measuring the thickness of different layers,the growth constant was calculated.It increases from 1.89(±0.03)×10^(-12)m^(2)·s^(-1)at 700℃ to 3.05(±0.05)×10^(-12)m^(2)·s^(-1)at 750℃,and 5.18(±0.05)×10^(-12)m^(2)·s^(-1)at 800℃.Meanwhile,the content of Fe is linearly increased in AZ91D with the increase of holding time at 700℃ and 750℃,while it shows a significantly increment after holding for 8 h at 800℃,indicating holding temperature is more crucial to determine the Fe content of AZ91D than holding time.
基金supported by the State Key Program of National Natural Science Foundation of China(Grant No.12132003)State Key Laboratory of Explosion Science and Technology(Grant No.QNKT20-07)。
文摘The shock-induced reaction mechanism and characteristics of Ni/Al system,considering an Al nanoparticle-embedded Ni single crystal,are investigated through molecular dynamics simulation.For the shock melting of Al nanoparticle,interfacial crystallization and dissolution are the main characteristics.The reaction degree of Al particle first increases linearly and then logarithmically with time driven by rapid mechanical mixing and following dissolution.The reaction rate increases with the decrease of particle diameter,however,the reaction is seriously hindered by interfacial crystallization when the diameter is lower than 9 nm in our simulations.Meanwhile,we found a negative exponential growth in the fraction of crystallized Al atoms,and the crystallinity of B2-NiAl(up to 20%)is positively correlated with the specific surface area of Al particle.This can be attributed to the formation mechanism of B2-NiAl by structural evolution of finite mixing layer near the collapsed interface.For shock melting of both Al particle and Ni matrix,the liquid-liquid phase inter-diffusion is the main reaction mechanism that can be enhanced by the formation of internal jet.In addition,the enhanced diffusion is manifested in the logarithmic growth law of mean square displacement,which results in an almost constant reaction rate similar to the mechanical mixing process.
基金the National Key Research and Development Program of China(2019YFA0705400)the National Natural Science Foundation of China(T2293692,21925404,22021001,21991151,and 22002036)+1 种基金the Natural Science Foundation of Fujian Province of China(2021J06001)the National Natural Science Foundation of Henan province(232300421081).
文摘Interfacial water molecules are the most important participants in the hydrogen evolution reaction(HER).Hence,understanding the behavior and role that interfacial water plays will ultimately reveal the HER mechanism.Unfortunately,investigating interfacial water is extremely challenging owing to the interference caused by bulk water molecules and complexity of the interfacial environment.Here,the behaviors of interfacial water in different cationic electrolytes on Pd surfaces were investigated by the electrochemistry,in situ core-shell nanostructure enhanced Raman spectroscopy and theoretical simulation techniques.Direct spectral evidence reveals a red shift in the frequency and a decrease in the intensity of interfacial water as the potential is shifted in the positively direction.When comparing the different cation electrolyte systems at a given potential,the frequency of the interfacial water peak increases in the specified order:Li+<Na^(+)<K^(+)<Ca^(2+)<Sr^(2+).The structure of interfacial water was optimized by adjusting the radius,valence,and concentration of cation to form the two-H down structure.This unique interfacial water structure will improve the charge transfer efficiency between the water and electrode further enhancing the HER performance.Therefore,local cation tuning strategies can be used to improve the HER performance by optimizing the interfacial water structure.
基金Project supported by the National Key Research and Development Program of China (Grant Nos.2019YFA0704900 and 2023YFB3809400)the National Natural Science Foundation of China (Grant Nos.52130203 and 52172232)the Basic and Applied Basic Research Foundation of Guangdong Province (Grant No.2022B1515120005)。
文摘The method to combine thermoelectric(TE)and magnetocaloric(MC)cooling techniques lies in developing a new material that simultaneously possesses a large TE and good MC cooling performance.In this work,using n-type Bi_(2)Te_(2.7)Se_(0.3)(BTS)as the TE base material and Gd as the second-phase MC material,Gd/BTS composites were prepared by the spark plasma sintering method.In the composites,interfacial reaction between Gd and BTS was identified,resulting in the formation of Gd Te,which has a large impact on the electron concentration through the adjustment of defect concentration.The MC/TE composite containing 2.5 wt%Gd exhibited a ZT value of 0.6 at 300 K,essentially retaining the original TE performance,while all the composites largely maintained the excellent MC performance of Gd.This work provides a potential pathway to achieving high performance in MC/TE composites.
基金financially supported by the National Natural Science Foundation of China (52363028)the Natural Science Foundation of Guangxi Province (2021GXNSFAA076001)the Guangxi Technology Base and Talent Subject (GUIKE AD23023004,GUIKE AD20297039)
文摘Precisely tailoring the surface electronic structures of electrocatalysts for optimal hydrogen binding energy and hydroxide binding energy is vital to improve the sluggish kinetics of hydrogen oxidation reac-tion(HOR).Herein,we employ a partial desulfurization strategy to construct a homologous Ru-RuS_(2) heterostructure anchored on hollow mesoporous carbon nanospheres(Ru-RuS_(2)@C).The disparate work functions of the heterostructure contribute to the spontaneous formation of a unique built-in electric field,accelerating charge transfer and boosting conductivity of electrocatalyst.Consequently,Ru-RuS_(2)@C exhibits robust HOR electrocatalytic activity,achieving an exchange current density and mass activity as high as 3.56 mA cm^(-2) and 2.13 mAμg_(Ru)^(-1),respectively.exceeding those of state-of-the-art Pt/C and most contemporary Ru-based HOR electrocatalysts.Surprisingly,Ru-RuS_(2)@C can tolerate 1000 ppm of cO that lacks in Pt/C.Comprehensive analysis reveals that the directional electron transfer across Ru-RuS_(2) heterointerface induces local charge redistribution in interfacial region,which optimizes and balances the adsorption energies of H and OH species,as well as lowers the energy barrier for water formation,thereby promoting theHoR performance.
基金financially supported by the National Natural Science Foundation of China(No.51965040)Science and Technology Project of Jiangxi Provincial Department of Transportation,China(No.2022H0048)。
文摘The interfacial reaction behavior of Al and Ti_(3)AlC_(2)at different pouring temperatures and its effect on the microstructure and mechanical properties of the composites were investigated.The results show that the addition of3.0 wt.%Ti_(3)AlC_(2)refines the average grain size ofα(Al)in the composite by 50.1%compared to Al6061 alloy.Morphological analyses indicate that an in-situ Al_(3Ti)transition layer of-180 nm in thickness is generated around the edge of Ti_(3)AlC_(2)at 720℃,forming a well-bonded Al-Al_(3Ti)interface.At this processing temperature,the ultimate tensile strength of A16061-3.0 wt.%Ti_(3)AlC_(2)composite is 199.2 MPa,an improvement of 41.5%over the Al6061 matrix.Mechanism analyses further elucidate that 720℃is favourable for forming the nano-sized transition layer at the Ti_(3)AlC_(2)edges.And,the thermal mismatch strengthening plays a dominant role in this state,with a strengthening contribution of about 74.8%.
基金financially supported by the National Natural Science Foundation of China(No.5217042069)the Young Elite Scientist Sponsorship Program by China Association for Science and Technology(CAST)(No.YESS20200103)the Fundamental Research Funds for the Central Universities(No.265QZ2022004)。
文摘Pt-based nanocatalysts offer excellent prospects for various industries.However,the low loading of Pt with excellent performance for efficient and stable nanocatalysts still presents a considerable challenge.In this study,nanocatalysts with ultralow Pt content,excellent performance,and carbon black as support were prepared through in-situ synthesis.These~2-nm particles uniformly and stably dispersed on carbon black because of the strong s-p-d orbital hybridizations between carbon black and Pt,which suppressed the agglomeration of Pt ions.This unique structure is beneficial for the hydrogen evolution reaction.The catalysts exhibited remarkable catalytic activity for hydrogen evolution reaction,exhibiting a potential of 100 mV at 100 mA·cm^(-2),which is comparable to those of commercial Pt/C catalysts.Mass activity(1.61 A/mg)was four times that of a commercial Pt/C catalyst(0.37 A/mg).The ultralow Pt loading(6.84wt%)paves the way for the development of next-generation electrocatalysts.
基金financially supported by the National Natural Science Foundation of China(22309137,22279095)Open subject project State Key Laboratory of New Textile Materials and Advanced Processing Technologies(FZ2023001).
文摘Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units,the d-orbital and electronic structures can be adjusted,which is an important strategy to achieve sufficient oxygen evolution reaction(OER)performance in AEMWEs.Herein,the ternary NiFeM(M:La,Mo)catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work.Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen,resulting in enhanced adsorption strength of oxygen intermediates,and reduced rate-determining step energy barrier,which is responsible for the enhanced OER performance.More critically,the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm^(−2) in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h.
基金Projects(51001041,51171054)supported by the National Natural Science Foundation of China
文摘Ti-1100 alloys were melted in a controlled atmospheric induction furnace equipped with a Ca O crucible. The microstructure, chemical composition, microhardness and metal-crucible interfacial reactions were systematically investigated. The results demonstrate that the primary solidification microstructure in the as-cast alloys was the typical Widmansttten structure. The interactions between crucible and molten alloys are attributed to slight chemical dissolution and weak physical erosion. According to the line scanning analysis, the interfacial layer(α-case) thicknesses of Ti-1100 samples in the bottom and side wall are about 18 and 17 μm, respectively, which are slightly lower than those presented from microhardness tests(25 and 20 μm). The formation of α-case was caused by interstitial oxygen atoms. The standard Gibbs energy of reaction Ca O(s)=Ca+O for Ti-1100 alloy was also determined. The equilibrium constant and the interaction parameter between calcium and oxygen were obtained as lg K=-3.14 and eCa O =-3.54.
基金Project (60776019) supported by the National Natural Science Foundation of ChinaProject (61-TP-2010) supported by Research Fund of the State Key Laboratory of Solidification Processing(NWPU),China
文摘The SiC/A356/FeNi50 composite was fabricated by gas pressure infiltration. The interfacial region of the SiC/A356/FeNi50 composite consisted of FeNi50 reaction layer, A1 reaction layer and A1 alloy matrix. The main intermetallic compounds were (Fe,Ni)a(A1,Sih3 and (Fe,Ni)2(A1,Si)5 at the A1 reaction layer and FeNi50 reaction layer, respectively. The bending behavior versus different infiltration temperatures and holding times was also investigated. The bending strength at 670 ~C was the highest and close to the bending strength of A1 alloy (223 MPa), and 46% of SIC/A356. The brittle intermetallic compounds existing at the interface induced the decreasing of the bending strength. The pores were reduced by adequate heating time due to the homogeneous temperature of preform, which was beneficial to improve the bending strength of the composite.
文摘Bonding of SiC to SiC using Ni and Ni - 25at%Cr foils was performed at high temperature.Interface structures and reaction phases were investigated by EPMA analyses and XRD diffraction method, re- spectively. At a bonding temperature of 1273K Ni reacts with SiC and forms various Ni silicides con- taining graphite baside SiC. Ni3Si without graphite was formed at Ni side.The interface structure of SiC/Ni joint was SiC/Ni2Si + C/Ni31 Si12 + G/Ni3 Si/Ni. At the interface between SiC and Ni- 25at%Cr alloy the Ni silicide was only Ni2Si at the same bonding temperature,and further(Cr, Ni)7 (Si, C)3 carbide was formed between Ni silicide + graphite zone and Ni - 25at%Cr alloy.The interface structure of SiC/Ni - 25at%Cr alloy was SiC/Ni2Si + C/(Cr, Ni)7 (Si, C)3+Ni(ss. Cr, Si)/Ni - 25at%Cr.
基金the Natural Sciences and Engineering Research Council(NSERC) of Canada and Micralyne Inc.for providing the research fund and Si substrates for electroplating(Micralyne)
文摘Ni/Sn couples, prepared by sequentially electroplating Ni layers and Sn layers on metallized Si wafers, were employed to study the microstructures and growth kinetics of Ni-Sn intermediate phases, when the Ni/Sn couples were aged at room temperature or armealed at temperatures from 150 to 225℃ for various times. The results show that the NiSn phase and Ni3Sn4 phase are formed, respectively, in the aged couples and annealed couples. The Ni3Sn4 layer is continuously distributed between the Ni and Sn sides in the annealed Ni/Sn couples. The Ni3Sn4 growth follows parabolic growth kinetics with an apparent activation energy of 39.0 kJ/mol.
文摘In order to evaluate the interfacial reaction, a SiCf/Ti (TA1) composite was fabricated by a vacuum hot pressing method and then heat-treated in vacuum at 800℃ for up to 100 h. The elemental distributions of C, Si and Ti at the interfacial reaction zone were investigated. It was found that the reaction zone occurs during the fabrication process and continuously grows at high temperature because the Si and C atoms diffuse from SiC fibers to the matrix and Ti atoms diffuse in the opposite direction. The growth of the reaction zone is diffusion controlled and the mechanism of the reaction can be described by a reactive diffusion model of solid-state growth of an AmBn layer between two elementary substances A and B.
基金supported by authors thank the Postdoctoral Science Foundation of China (No. 20090451393)the Aviation Science Foundation of China (No. 2009ZF53062)
文摘Continuous SiC fiber reinforced copper matrix (SiC~/Cu) composites were prepared by fiber coating method, and Ti6A14V interlayer was introduced as an interfacial modification coating to improve the interfacial bonding strength. The interfacial reaction characteristics were investigated by transmission electron microscopy (TEM). The results show that nearly all the titanium atoms reacted with the carbon coating of SiC fibers to form two layers of TiC. Also, a thin copper layer that is sandwiched between these two layers was detected. No Ti-Cu interfacial reaction product was observed. The formation process of the interfacial reaction along with its mechanism was discussed.
文摘A slight interfacial reaction in squeeze-cast SiCp/6061AI composites has been studied. It is found that this kind of reaction has a particular effect on the mechanical properties of the composites. The results of fie-cure tests show that this reaction in the composites obviously increases the elastic properties, but is not beneficial to the fracture strength and ductility.This phenomenon can be interpreted in terms of two different micromechanisms which have been analyzed using TEM and HREM observations, acoustic emission (AE) technique and SEM fractography. In addition, a new method of SiC surface modification which can control the interface state is initially presented.
基金financially supported by the National Key R&D Program of China (grant no. 2018YFB0905400)the National Natural Science Foundation of China (grant nos. 22075331, 51702376, 21905057)+2 种基金the Fundamental Research Funds for the Central Universities (19lgzd02)the Guangdong Pearl River Talents Plan (2019QN01L117)the National Thousand Youth Talents Project of the Chinese Government.
文摘Featured with high power density,improved safety and low-cost,rechargeable aqueous zinc-ion batteries(ZIBs) have been revived as possible candidates for sustainable energy storage systems in recent years.However,the challenges inherent in zinc(Zn) anode,namely dendrite formation and interfacial parasitic reactions,have greatly impeded their practical application.Whereas the critical issue of dendrite formation has attracted widespread concern,the parasitic reactions of Zn anodes with mildly acidic electrolytes have received very little attentions.Considering that the low Zn reversibility that stems from interfacial parasitic reactions is the major obstacle to the commercialization of ZIBs,thorough understanding of these side reactions and the development of correlative inhibition strategies are significant.Therefore,in this review,the brief fundamentals of corrosion and hydrogen evolution reactions at Zn surface is presented.In addition,recent advances and research efforts addressing detrimental side reactions are reviewed from the perspective of electrode design,electrode-electrolyte interfacial engineering and electrolyte modification.To facilitate the future researches on this aspect,perspectives and suggestions for relevant investigations are provided lastly.
基金This work is supported by National Natural Science Foundation of China (10676027).
文摘Mo foil (10 -20 μm in thickness) and Al foil (20 -60 μLm in thickness) were vacuum diffusion bonded at 600 - 640 ~C under 20 MPa for 54 min - 6 h. The joints were examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) to study the evolution mechanism of the reaction layers. The results show that Al atoms diffuse into Mo grain boundaries and form reaction products as Mo3Al8, MoAl4 , MoAl5 and MoAl12. The surface oxide film is eroded by the growths of the reaction products that plow into the lamellar texture of Mo grain boundaries. Mo3Al8 layer grows by "taking root" downwards and transforms into MoAl4 and MoAl5 phases upwards by absorbing Al atoms. MoAl12 layer grows up from MoAl5 layer in the same way. When the supplement of Al atoms ceases, MoAl12 transforms reversely into MoAl5 and MoAl5 into MoAl4 via the loss of Al atoms. However, MoAl4 continues to precipitate from Mo3Als layer. At last, there are MoAl4 and Mo3Al8 remained on the joint interface.
基金the National Natural Science Foundation of China(51525805,51727812,51808526)。
文摘For aqueous interfacial reactions involving H+and OH-, the interfacial pH varies dynamically during the reaction process, which is a key factor determining the reaction performance. Herein, the kinetic relevance between the interfacial pH and reaction rate is deciphered owing to the success in establishing the transport equations of H+/OH- in unbuffered solutions, and is charted as a current(j)–pH diagram in the form of an electrochemical response. The as-described j–pH interplay is experimentally verified by the oxygen reduction and hydrogen evolution reactions. This diagram serves to form a panoramic graphic view of pH function working on the interfacial reactions in conjunction with the Pourbaix’s potential–pH diagram, and particularly enables a kinetic understanding of the transport effect of H+and OH-on the reaction rate and valuable instruction toward associated pH control and buffering manipulation.
基金Funded by the National Natural Science Foundation of China(No.51465039)Natural Science Foundation of Jiangxi Province(No.20151BAB206041,20161BAB206122)Fund of the State Key Laboratory of Solidification Processing in NWPU(No.SKLSP201508)
文摘The effects of different Bi contents on the properties of Sn solders were studied. The interfacial reaction and growth behavior of intermetallic compounds(IMCs) layer(η-Cu6 Sn5 + e-Cu3 Sn) for various soldering time and the influence of Bi addition on the thermal behavior of Sn-x Bi solder alloys were investigated. The Cu6 Sn5 IMC could be observed as long as the molten solder contacted with the Cu substrate. However, with the longer welding time such as 60 and 300 s, the Cu3 Sn IMC was formed at the interface between Cu6 Sn5 and Cu substrate. With the increase of soldering time, the thickness of total IMCs increased, meanwhile, the grain size of Cu6 Sn5 also increased. An appropriate amount of Bi element was beneficial for the growth of total IMCs,but excessive Bi(≥ 5 wt%) inhibited the growth of Cu6 Sn5 and Cu3 Sn IMC in Sn-x Bi/Cu microelectronic interconnects. Furthermore, with the Bi contents increasing(Sn-10 Bi solder in this present investigation), some Bi particles accumulated at the interface between Cu6 Sn5 layer and the solder.