期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Determination of interfacial heat transfer coefficient and its application in high pressure die casting process 被引量:6
1
作者 Cao Yongyou Guo Zhipeng Xiong Shoumei 《China Foundry》 SCIE CAS 2014年第4期314-321,共8页
In this paper,the research progress of the interfacial heat transfer in high pressure die casting(HPDC)is reviewed.Results including determination of the interfacial heat transfer coefficient(IHTC),influence of castin... In this paper,the research progress of the interfacial heat transfer in high pressure die casting(HPDC)is reviewed.Results including determination of the interfacial heat transfer coefficient(IHTC),influence of casting thickness,process parameters and casting alloys on the IHTC are summarized and discussed.A thermal boundary condition model was developed based on the two correlations:(a)IHTC and casting solid fraction and(b)IHTC peak value and initial die surface temperature.The boundary model was then applied during the determination of the temperature field in HPDC and excellent agreement was found. 展开更多
关键词 high pressure die casting interfacial heat transfer coefficient inverse method
下载PDF
Optimal Experiment Design for the Identification of the Interfacial Heat Transfer Coefficient in Sand Casting
2
作者 Dorsaf Khalifa Foued Mzali 《Fluid Dynamics & Materials Processing》 EI 2022年第6期1841-1852,共12页
The interfacial heat transfer coefficient(IHTC)is one of the main input parameters required by casting simulation software.It plays an important role in the accurate modeling of the solidification process.However,its ... The interfacial heat transfer coefficient(IHTC)is one of the main input parameters required by casting simulation software.It plays an important role in the accurate modeling of the solidification process.However,its value is not easily identifiable by means of experimental methods requiring temperature measurements during the solidification process itself.For these reasons,an optimal experiment design was performed in this study to determine the optimal position for the temperature measurement and the optimal thickness of the rectangular cast iron part.This parameter was identified using an inverse technique.In particular,two different algorithms were used:Levenberg Marquard(LM)and Monte Carlo(MC).A numerical model of the solidification process was associated with the optimization algorithm.The temperature was measured at different positions from the mould/metal interface at d=0 mm(mould/metal interface),30 mm,60 mm and 90 mm.the thicknesses of the cast part were:L1=40 mm,60 mm and 80 mm.A comparative study on the IHTC identification was then carried out by varying the initial value of the IHTC between 500 Wm^(-2)K^(-1) and 1050 Wm^(-2)K^(-1).Results showed that the MC algorithm used for estimating the IHTC gives the best results,and the optimal position was at d=30 mm,the position closest to the mould/metal interface,for the lowest thickness L1=40 mm. 展开更多
关键词 Monte Carlo interfacial heat transfer coefficient Levenberg Marquard optimal experiment design sand casting
下载PDF
Heat Transfer between Casting and Die during High Pressure Die Casting Process of AM50 Alloy-Modeling and Experimental Results
3
作者 Zhipeng GUO Shoumei XIONG +1 位作者 Sang-Hyun Cho Jeong-Kil Choi 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第1期131-135,共5页
A method based on die casting experiments and mathematic modeling is presented for the determination of the heat flow density (HFD) and interfacial heat transfer coefficient (IHTC) during the high pressure die cas... A method based on die casting experiments and mathematic modeling is presented for the determination of the heat flow density (HFD) and interfacial heat transfer coefficient (IHTC) during the high pressure die casting (HPDC) process.Experiments were carried out using step shape casting and a commercial magnesium alloy,AM50.Temperature profiles were measured and recorded using thermocouples embedded inside the die. Based on these temperature readings,the HFD and IHTC were successfully determined and the calculation results show that the HFD and IHTC at the metal-die interface increases sharply right after the fast phase injection process until approaching their maximum values,after which their values decrease to a much lower level until the dies are opened.Different patterns of heat transfer behavior were found between the die and the casting at different thicknesses.The thinner the casting was,the more quickly the HFD and IHTC reached their steady states.Also,the values for both the HFD and IHTC values were different between die and casting at different thicknesses. 展开更多
关键词 interfacial heat transfer coefficient High pressure die casting process AM50 Magnesium alloy
下载PDF
Theoretical and experimental advances on heat transfer and flow characteristics of metal foams 被引量:2
4
作者 WANG Hui GUO LieJin CHEN Kang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第5期705-718,共14页
Open cell metal foam can be applied to greatly improve thermal performance of heat sink and heat exchanger,so that it has been widely used in the fields of thermal(or heat)control system of aerospace vehicle and energ... Open cell metal foam can be applied to greatly improve thermal performance of heat sink and heat exchanger,so that it has been widely used in the fields of thermal(or heat)control system of aerospace vehicle and energy utilization system and become a very important topic for research in the aerospace thermophysics field,and more and more attentions have been attracted.The optimal design of metal foam heat transfer devices is based on the understanding the flow and heat transfer characteristics in metal foam.This article reviews some recent progresses of theoretical and experimental researches on heat transfer enhancement and flow characteristics of metal foam.We found that the pore cell simplification models of metal foams generally fall into four categories,among which the most commonly used cell model is Kelivin model.Some exploratory works performed by the current authors are also introduced,such as the effect of boundary conditions on the heat transfer enhancement;the theoretical modelling of interfacial convective heat transfer taking into account heat conduction between foam ligaments;and the flow characteristics under relatively high velocity.The analytical results show that the flow characteristics of metal foam at relatively high speed are completely different from those at low speed,a further thorough study of the heat transfer and flow characteristics of metal foam is necessarily required.In this paper,two types of partial filling techniques are discussed.The heat transfer performance of partially filled tubes was evaluated by both the performance evaluation criteria and the performance evaluation plot of enhanced heat transfer techniques oriented for energy-saving.The results show that the filling type of metal foam have a significant impact on its heat transfer enhancement performance.Therefore,the filling method of metal foam should be further studied,in order to optimize the thermophysical properties of heat transfer devices. 展开更多
关键词 metal foam effective thermal conductivity interfacial convective heat transfer coefficient heat transfer enhancement thermal radiation
原文传递
Directional solidification behavior of turbine blades in DZ125 alloy:design of blade numbers on assembly 被引量:2
5
作者 Yong Shang Yan-Ling Pei +5 位作者 Sheng-Kai Gong Yi Ru Yuan-Chao Yu Ru-Hao Zhou Shu-Suo Li Hui-Bin Xu 《Rare Metals》 SCIE EI CAS CSCD 2021年第5期1134-1144,共11页
The influence of blades assembly,i.e.,the blade number on the solidification process,heat exchange and grain structure on a directionally solidified Ni-based superalloy DZ125 was investigated by combining the experime... The influence of blades assembly,i.e.,the blade number on the solidification process,heat exchange and grain structure on a directionally solidified Ni-based superalloy DZ125 was investigated by combining the experimental and simulation results.The casting process was simulated thermodynamically by ProCAST software,where the interface heat transfer coefficient was precisely determined by a measurement with thermocouples.There is a good agreement between experimental and simulation results.It was interestingly found that with the number of blades increasing from 6 to 10,due to the decrease in radiation absorption efficiency,the maximum temperature and the heating rate decrease in the mold,during the preheat process.During the withdrawal procedure,increased assembly numbers reduce the radiation exchange from mold to the enclosure,resulting in the decrease in cooling rate and temperature gradient of the blades.At the end of withdrawal,the slower cooling rate of the outside balances the temperature distribution of internal and external surfaces on the rabbet of blade. 展开更多
关键词 Directional solidification SUPERALLOY PROCAST interfacial heat transfer coefficient
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部