The exceptional physical properties and unique layered structure of two-dimensional(2D)materials have made this class of materials great candidates for applications in electronics,energy conversion/storage devices,nan...The exceptional physical properties and unique layered structure of two-dimensional(2D)materials have made this class of materials great candidates for applications in electronics,energy conversion/storage devices,nanocomposites,and multifunctional coatings,among others.At the center of this application space,mechanical properties play a vital role in materials design,manufacturing,integration and performance.The emergence of 2D materials has also sparked broad scientific inquiry,with new understanding of mechanical interactions between 2D structures and interfaces being of great interest to the community.Building on the dramatic expansion of recent research activities,here we review significant advances in the understanding of the elastic properties,in-plane failures,fatigue performance,interfacial shear/friction,and adhesion behavior of 2D materials.In this article,special emphasis is placed on some new 2D materials,novel characterization techniques and computational methods,as well as insights into deformation and failure mechanisms.A deep understanding of the intrinsic and extrinsic factors that govern 2D material mechanics is further provided,in the hopes that the community may draw design strategies for structural and interfacial engineering of 2D material systems.We end this review article with a discussion of our perspective on the state of the field and outlook on areas for future research directions.展开更多
Given the depletion of high-quality magnesite deposits and the rising demand for high-end magnesium materials,the separation and utilization of high-calcium magnesite ores have become essential.However,the similar sur...Given the depletion of high-quality magnesite deposits and the rising demand for high-end magnesium materials,the separation and utilization of high-calcium magnesite ores have become essential.However,the similar surface properties and solubility of semi-soluble salt-type minerals,pose significant challenges for the utilization of dolomite-rich magnesite resources.In this study,1-hydroxypropane-1,1-di phosphonic acid(HPDP)was identified for the first time as a high-performance depressant for dolomite.Various tests,including contact angle measurements,ζ potential analysis,X-ray photoelectron spectroscopy,and atomic force microscopy,were conducted to elucidate the interfacial interaction mechanisms of HPDP on the surfaces of the two minerals at different scales.Additionally,molecular modeling calculations were used to detail the spatial matching relationship between HPDP and the crystal faces of the two minerals.It was emphasized that HPDP specifically adsorbed onto the dolomite surface by forming calcium phosphonate,ensuring that the dolomite surface remained hydrophilic and sank.Moreover,it was found that the adsorption strength of HPDP on the mineral surfaces depended on the activity of the metal sites and their spatial distribution.These findings provide a theoretical foundation for the molecular design of flotation reagents for high-calcium magnesite ores.展开更多
Mg/Cu bimetal composites were prepared by compound casting method, and the microstructure evolution, phase constitution and bonding strength at the interface were investigated.It is found that a good metallurgical bon...Mg/Cu bimetal composites were prepared by compound casting method, and the microstructure evolution, phase constitution and bonding strength at the interface were investigated.It is found that a good metallurgical bonding can be achieved at the interface of Mg and Cu,which consists of two sub-layers,i.e.,layer I with 30μm on the copper side composed of Mg2Cu matrix phase, on which a small amount of dendritic MgCu2 phase was randomly distributed;layerⅡ with 140μm on the magnesium side made up of the lamellar nano-eutectic network Mg2Cu+(Mg) and a small amount of detached Mg2Cu phase. The average interfacial shear strength of the bimetal composite is measured to be 13 MPa.This study provides a new fabrication process for the application of Mg/Cu bimetal composites as the hydrogen storage materials.展开更多
Copper cladding aluminum(CCA)rods with the section dimensions of12mm in diameter and2mm in sheath thickness were fabricated by vertical core-filling continuous casting(VCFC)technology.The kinds and morphology of inter...Copper cladding aluminum(CCA)rods with the section dimensions of12mm in diameter and2mm in sheath thickness were fabricated by vertical core-filling continuous casting(VCFC)technology.The kinds and morphology of interfacial intermetallic compounds(IMCs)were investigated by SEM,XRD and TEM.The results showed that the interfacial structure of Cu/Al was mainly composed of layeredγ1(Cu9Al4),cellularθ(CuAl2),andα(Al)+θ(CuAl2)phases.Moreover,residual acicularε2(Cu3Al2+x)phase was observed at the Cu/Al interface.By comparing the driving force of formation forε2(Cu3Al2+x)andγ1(Cu9Al4)phases,the conclusion was drawn that theε2(Cu3Al2+x)formed firstly at the Cu/Al interface.In addition,the interfacial formation mechanism of copper cladding aluminum composites was revealed completely.展开更多
The moirésuperlattice,arising from the interface of mismatched single crystals,intricately regulates the physical and mechanical properties of materials,giving rise to phenomena such as superconductivity and supe...The moirésuperlattice,arising from the interface of mismatched single crystals,intricately regulates the physical and mechanical properties of materials,giving rise to phenomena such as superconductivity and superlubricity.This study delves into the profound impact of moirésuperlattices on the interfacial mechanical behavior of van der Waals(vdW)layered materials,with a particular focus on tribological properties.A comprehensive review of continuum modeling approaches for vdW layered materials is presented,accentuating the incorporation of moirésuperlattice effects in theoretical models to unravel their distinctive interfacial frictional behavior and thermodynamic properties.The exploration of moirésuperlattices has significantly advanced our fundamental understanding of interface phenomena in vdW layered materials.This progress provides crucial theoretical insights that can inform the design of multifunctional devices based on the unique properties of twisted layered materials.展开更多
Full-length grouted bolts play a crucial role in geotechnical engineering thanks to their excellent stability.However,few studies have been concerned with the degrading performance of grouted rock bolts caused by exte...Full-length grouted bolts play a crucial role in geotechnical engineering thanks to their excellent stability.However,few studies have been concerned with the degrading performance of grouted rock bolts caused by extensive and continuous heat conduction from surrounding rocks in high-geothermal tunnels buried more than 100 m(temperature from 28C to 100C).To investigate the damage mechanism,we examined the time-varying behaviors of grouted rock bolts in both constant and variable temperature curing environments and their damage due to the coupling effects of high temperature and humidity through mechanical and micro-feature tests,including uniaxial compression test,pull-out test,computed tomography(CT)scans,X-ray diffraction(XRD)test,thermogravimetric analysis(TGA),etc.,and further analyzed the relationship between grout properties and anchorage capability.In order to facilitate a rapid assessment and control of the anchorage performance of anchors in different conditions,results of the interface bond degradation tests were correlated to environment parameters based on the damage model of interfacial bond stress proposed.Accordingly,a thermal hazard classification criterion for anchorage design in high-geothermal tunnels was suggested.Based on the reported results,although high temperature accelerated the early-stage hydration reaction of grouting materials,it affected the distribution and quantity of hydration products by inhibiting hydration degree,thus causing mechanical damage to the anchorage system.There was a significant positive correlation between the strength of the grouting material and the anchoring force.Influenced by the changes in grout properties,three failure patterns of rock bolts typically existed.Applying a hot-wet curing regime results in less reduction in anchorage force compared to the hot-dry curing conditions.The findings of this study would contribute to the design and investigations of grouted rock bolts in high-geothermal tunnels.展开更多
For the better use of composites and a deeper insight into the fracture propa- gation and stress transfer of the interface between fiber and matrix, a theoretical solution of closed form is presented with the assumed ...For the better use of composites and a deeper insight into the fracture propa- gation and stress transfer of the interface between fiber and matrix, a theoretical solution of closed form is presented with the assumed bilinear local bond-slip law and a parabolic shear stress distribution along the thickness of the matrix. The load-displacement re- lationship and interfacial shear stress are obtained for four loading stages. Finally, the effects of Young's modulus of fiber (matrix) and bond length on the performance of the interface are illustrated.展开更多
The rapid improvement in the gel polymer electrolytes(GPEs)with high ionic conductivity brought it closer to practical applications in solid-state Li-metal batteries.The combination of solvent and polymer enables quas...The rapid improvement in the gel polymer electrolytes(GPEs)with high ionic conductivity brought it closer to practical applications in solid-state Li-metal batteries.The combination of solvent and polymer enables quasi-liquid fast ion transport in the GPEs.However,different ion transport capacity between solvent and polymer will cause local nonuniform Li+distribution,leading to severe dendrite growth.In addition,the poor thermal stability of the solvent also limits the operating-temperature window of the electrolytes.Optimizing the ion transport environment and enhancing the thermal stability are two major challenges that hinder the application of GPEs.Here,a strategy by introducing ion-conducting arrays(ICA)is created by vertical-aligned montmorillonite into GPE.Rapid ion transport on the ICA was demonstrated by 6Li solid-state nuclear magnetic resonance and synchrotron X-ray diffraction,combined with computer simulations to visualize the transport process.Compared with conventional randomly dispersed fillers,ICA provides continuous interfaces to regulate the ion transport environment and enhances the tolerance of GPEs to extreme temperatures.Therefore,GPE/ICA exhibits high room-temperature ionic conductivity(1.08 mS cm^(−1))and long-term stable Li deposition/stripping cycles(>1000 h).As a final proof,Li||GPE/ICA||LiFePO_(4) cells exhibit excellent cycle performance at wide temperature range(from 0 to 60°C),which shows a promising path toward all-weather practical solid-state batteries.展开更多
The feasibility of using coral reef sand(CRS) in Portland cement concrete is investigated by testing the mechanical property and microstructure of concrete. The composition, structure and properties of the CRS are a...The feasibility of using coral reef sand(CRS) in Portland cement concrete is investigated by testing the mechanical property and microstructure of concrete. The composition, structure and properties of the CRS are analyzed. Mechanical properties and microstructure of concrete with CRS are studied and compared to concrete with natural river sand. The relationship between the microstructure and performance of CRS concrete is established. The CRS has a porous surface with high water intake capacity, which contributes to the mechanical properties of concrete. The interfacial transition zone between the cement paste and CRS is densified compared to normal concrete with river sand. Hydration products form in the pore space of CRS and interlock with the matrix of cement paste, which increases the strength. The total porosity of concrete prepared with CRS is higher than that with natural sand. The main difference in pore size distribution is the fraction of fine pores in the range of 100 nm.展开更多
We investigated mechanical properties of concretes made with impurity aggregates of different combinations. Besides the mechanisms were explored by EDS, CT, and hardness testing. The results showed that fully rust-sta...We investigated mechanical properties of concretes made with impurity aggregates of different combinations. Besides the mechanisms were explored by EDS, CT, and hardness testing. The results showed that fully rust-stained and surface rust-stained sandstone aggregate had significant adverse impact on the compressive strength of concrete while sandstone aggregate had a much more obvious impact on the ultimate tension of concrete. Concrete crack was more prone to expand along surfaces and the micro-hardness of interfacial transition zone of different aggregates was ranked in decreasing trend as sandstone, slate, SR sandstone, marble, and FR sandstone. The cluster growth of long needle-like ettringite crystal and strong preferential growth trend of Ca(OH)2 crystals would result in wider interfacial transition zone range of concretes made with fully rust-stained sandstone and marble aggregate, respectively. Therefore, the impurity aggregate content should be strictly controlled during aggregate selection.展开更多
The widespread nitrogen oxides(NOx,mainly in NO)in the atmosphere have threatened human health and ecological environment.The dilute NO(ppb)is difficult to efficiently remove via the traditional process due to its cha...The widespread nitrogen oxides(NOx,mainly in NO)in the atmosphere have threatened human health and ecological environment.The dilute NO(ppb)is difficult to efficiently remove via the traditional process due to its characteristics of low concentration,wide range,large total amount,etc.Photocatalysis can utilize solar energy to purify NO pollutants under mild conditions,but its application is limited due to the low selectivity of nitrate and poor activity of NO removal.The underlying reason is that the interface mechanism of NO oxidation is not clearly understood,which leads to the inability to accurately regulate the NO oxidation process.Herein,the recent advances in the photocatalytic oxidation of NO are summarized.Firstly,the common strategies to effectively regulate carrier dynamics such as morphology control,facet engineering,defect engineering,plasma coupling,heterojunction and single-atom catalysts are discussed.Secondly,the progress of enhancing the adsorption and activation of reactants such as NO and O_(2) during NO oxidation is described in detail,and the corresponding NO oxidation mechanisms are enumerated.Finally,the challenges and prospects of photocatalytic NO oxidation are presented in term of nanotechnology for air pollution control.This review can shed light on the interface mechanism of NO oxidation and provide illuminating information on designing novel catalysts for efficient NOx control.展开更多
In this work,the microstructure,failure behavior and interfacial properties with respective to the interfacial domain in SiCf/BN/SiC and C_(f)/PyC/SiC composites were studied via the fiber push-in test.The differences...In this work,the microstructure,failure behavior and interfacial properties with respective to the interfacial domain in SiCf/BN/SiC and C_(f)/PyC/SiC composites were studied via the fiber push-in test.The differences in the mechanical response of the interfacial domain were observed.During the fiber push-in test for SiCf/BN/SiC,the interface debonding accompanied with interphase fracture occurred,resulting in an obvious sign of the onset of debonding on loading-displacement(P-u)curves.While the good continuity of P-u curves can be observed for Cf/PyC/SiC,which is due to that the failure is in the form of interface debonding along with interphase lateral slipping caused by the extension of buckled carbon fiber,without any interphase fracture.The interfacial properties calculated from the fiber push-in test show that Cf/PyC/SiC possesses a weaker interfacial domain compared with SiC_(f)/BN/SiC.The interfacial shear stress of SiCf/BN/SiC and C_(f)/PyC/SiC composites amounts 94.2 and 48.1 MPa,respectively.展开更多
The heterogeneous Fenton reaction can generate highly reactive hydroxyl radicals(·OH)from reactions between recyclable solid catalysts and H2O2 at acidic or even circumneutral pH.Hence,it can effectively oxidiz...The heterogeneous Fenton reaction can generate highly reactive hydroxyl radicals(·OH)from reactions between recyclable solid catalysts and H2O2 at acidic or even circumneutral pH.Hence,it can effectively oxidize refractory organics in water or soils and has become a promising environmentally friendly treatment technology.Due to the complex reaction system,the mechanism behind heterogeneous Fenton reactions remains unresolved but fascinating,and is crucial for understanding Fenton chemistry and the development and application of efficient heterogeneous Fenton technologies.Iron-based materials usually possess high catalytic activity,low cost,negligible toxicity and easy recovery,and are a superior type of heterogeneous Fenton catalysts.Therefore,this article reviews the fundamental but important interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials..OH,hydroperoxyl radicals/superoxide anions(HO2./O2^-.)and high-valent iron are the three main types of reactive oxygen species(ROS),with different oxidation reactivity and selectivity.Based on the mechanisms of ROS generation,the interfacial mechanisms of heterogeneous Fenton systems can be classified as the homogeneous Fenton mechanism induced by surface-leached iron,the heterogeneous catalysis mechanism,and the heterogeneous reaction-induced homogeneous mechanism.Different heterogeneous Fenton systems catalyzed by characteristic iron-based materials are comprehensively reviewed.Finally,related future research directions are also suggested.展开更多
A modified FGH96 superalloy using 0.1 wt% graphene was successfully prepared using the wet mixing method. The interracial bonding mechanism between the graphene and the superalloy matrix was characterized using optica...A modified FGH96 superalloy using 0.1 wt% graphene was successfully prepared using the wet mixing method. The interracial bonding mechanism between the graphene and the superalloy matrix was characterized using optical micro- scope, scanning electronic microscope, transmission electronic microscope and X-ray tomography. The results revealed that the graphene could be dispersed uniformly inside the matrix of the superalloy, and the bonding interface between graphene and the superalloy showed a rather diffusion instead of abrupt distinction, suggesting that the interface was formed via chemical fusion rather than a mechanical combination. The uniform dispersity of the graphene inside the superalloy matrix could improve the tensile properties significantly, including tensile strength, plasticity and yield strength. The existence of the graphene at the fracture surface further verified that the graphene could increase the effective bearing force of the material during the tensile test.展开更多
Smoothly attaching the stretchable epidermal electronic devices(EEDs) onto the skin surface is highly desired to improve the measurement accuracy of electrophysiological signal.The paper presents an analytical approac...Smoothly attaching the stretchable epidermal electronic devices(EEDs) onto the skin surface is highly desired to improve the measurement accuracy of electrophysiological signal.The paper presents an analytical approach to study interfacial mechanics of the 2D planar EEDs on the checkerboard buckling patterns of human skin.Energy variation method is proposed to determine a criterion whether EEDs laminate conformally onto the skin surface under undeformed and stretched cases.EEDs with low bending stiffness(thin,soft devices/backing layer),smooth and soft skin,and strong adhesion promote conformal contact.Furthermore,the adhesion energy at the EED/skin interface is measured by the homemade peeling experiment platform with different substrate thicknesses and areal coverages.The upper limit of the areal coverage for EED conformal contact with the skin is proposed with given EED/skin properties.Conformability of EEDs are validated by experiments with different substrate thickness,areal coverage and external loadings.It provides a design guideline for EED to conformally contact with the skin surface for more accurate biological signal monitoring.展开更多
The γ/γ' microstructural evolution in a nickel based single crystal superalloy during load-free thermal exposure at 900 ℃ has been further investigated in this paper. The growth characteristics of γ' precipitate...The γ/γ' microstructural evolution in a nickel based single crystal superalloy during load-free thermal exposure at 900 ℃ has been further investigated in this paper. The growth characteristics of γ' precipitates were discussed in detail. The generation of interfacial dislocations would accelerate the rate of coalescence in the dendrite arms. The average sizes of precipitates were used to compare interface with diffusion controlled growth mechanism and no mechanism seems obviously dominant, although the square rate law gives slightly better fit. The coarsening behavior may be controlled by diffusion through the ragged interface between the γ' precipitate and the y matrix.展开更多
Nickel-based single-crystal superalloys are the key materials for the manufacturing and development of advanced aeroengines. Rhenium is a crucial alloying element in the advanced nickel-based single-crystal superalloy...Nickel-based single-crystal superalloys are the key materials for the manufacturing and development of advanced aeroengines. Rhenium is a crucial alloying element in the advanced nickel-based single-crystal superalloys for its special strengthening effects. The addition of Re could effectively enhance the creep properties of the single-crystal superalloys; thus, the content of Re is considered as one of the characteristics in different-generation single-crystal superalloys. Owing to the fundamental importance of rhenium to nickel-based single-crystal superalloys, much progress has been made on understanding of the effect of rhenium in the single-crystal superalloys. While the effect of Re doping on the nickelbased superalloys is well documented, the origins of the socalled rhenium effect are still under debate. In this paper,the effect of Re doping on the single-crystal superalloys and progress in understanding the rhenium effect are reviewed. The characteristics of the d-states occupancy in the electronic structure of Re make it the slowest diffusion elements in the single-crystal superalloys, which is undoubtedly responsible for the rhenium effect, while the postulates of Re cluster and the enrichment of Re at the c/c0 interface are still under debate, and the synergistic action of Re with other alloying elements should be further studied.Additionally, the interaction of Re with interfacial dislocations seems to be a promising explanation for the rhenium effect. Finally, the addition of Ru could help suppress topologically close-packed(TCP) phase formation and strengthen the Re doping single-crystal superalloys.Understanding the mechanism of rhenium effect will be beneficial for the effective utilization of Re and the design of low-cost single-crystal superalloys.展开更多
A series of silver-doped graphite-like carbon coatings was prepared on the surface of aluminum alloy using the magnetron sputtering method. The spontaneous escape behavior and inhibition mechanism of silver from graph...A series of silver-doped graphite-like carbon coatings was prepared on the surface of aluminum alloy using the magnetron sputtering method. The spontaneous escape behavior and inhibition mechanism of silver from graphite-like carbon coating were studied. The results showed that when the sample prepared with a 0.01-A current on the silver target was placed in an atmospheric environment for 0.5 h, an apparent silver escape phenomenon could be observed. However, the silver escape phenomenon was not observed for samples prepared with a 0.05-A current on the silver target if the sample was retained in a 10^(-1) Pa vacuum environment, even after 48 h. Compared with the sample placed in the atmospheric environment immediately after an ion plating process, the silver escape time lagged for 6 h. Nanometer-thick pure carbon coating coverage could effectively suppress silver escape. When the coating thickness reached700 nm, permanent retention of silver could be achieved in the silver-doped graphite-like carbon coating.As the silver residue content in the graphite-like carbon coating increased from 2.27 at.% to 5.35 at.%, the interfacial contact resistance of the coating decreased from 51mΩcm^2 to 6 mΩcm^2.展开更多
An innovative process of clad teeming was proposed to prepare slab ingot,which featured a built-in cold core to inhibit solidification defects.A 20-kg clad ingot was prepared in the experiment,using a volume ratio of ...An innovative process of clad teeming was proposed to prepare slab ingot,which featured a built-in cold core to inhibit solidification defects.A 20-kg clad ingot was prepared in the experiment,using a volume ratio of solid core to molten steel of 1:13 and a preheating temperature of cold core of 573 K.Solidification microstructures of the clad ingot were analyzed by comparing with a reference ingot without cold core.Interfacial morphologies and mechanical properties of the clad ingot were studied before and after hot rolling.The effect of cold core on heat transfer and nucleation during the solidification in clad ingot was analyzed.Results show that the solidification microstructures in the clad ingot are refined and homogenized obviously.The grain size in the center of the reference ingot is 2–3 times greater than that of clad ingot,and there is almost no columnar grain in the clad ingot.The interfacial shear strength reaches 318 MPa,which shows excellent metallurgical bonding at the interface of cold core and molten steel.Tiny defects at the interface are eliminated,and interfacial shear strength reaches 426 MPa after hot rolling with a 68.4%total reduction ratio.The experiment and analysis of this process are expected to provide a new idea to prepare large ingots with refinement and homogeneity at a low cost.展开更多
基金the Natural Sciences and Engineering Research Council(NSERC)of CanadaNational Natural Science Foundation of China(Grant Nos.12202430,12241202)+1 种基金USTC Research Funds of the Double First-Class Initiative(Grant No.YD2090002011)the China Scholarship Council。
文摘The exceptional physical properties and unique layered structure of two-dimensional(2D)materials have made this class of materials great candidates for applications in electronics,energy conversion/storage devices,nanocomposites,and multifunctional coatings,among others.At the center of this application space,mechanical properties play a vital role in materials design,manufacturing,integration and performance.The emergence of 2D materials has also sparked broad scientific inquiry,with new understanding of mechanical interactions between 2D structures and interfaces being of great interest to the community.Building on the dramatic expansion of recent research activities,here we review significant advances in the understanding of the elastic properties,in-plane failures,fatigue performance,interfacial shear/friction,and adhesion behavior of 2D materials.In this article,special emphasis is placed on some new 2D materials,novel characterization techniques and computational methods,as well as insights into deformation and failure mechanisms.A deep understanding of the intrinsic and extrinsic factors that govern 2D material mechanics is further provided,in the hopes that the community may draw design strategies for structural and interfacial engineering of 2D material systems.We end this review article with a discussion of our perspective on the state of the field and outlook on areas for future research directions.
基金supported by the Fundamental Research Funds for the Central Universities(No.N2201005).
文摘Given the depletion of high-quality magnesite deposits and the rising demand for high-end magnesium materials,the separation and utilization of high-calcium magnesite ores have become essential.However,the similar surface properties and solubility of semi-soluble salt-type minerals,pose significant challenges for the utilization of dolomite-rich magnesite resources.In this study,1-hydroxypropane-1,1-di phosphonic acid(HPDP)was identified for the first time as a high-performance depressant for dolomite.Various tests,including contact angle measurements,ζ potential analysis,X-ray photoelectron spectroscopy,and atomic force microscopy,were conducted to elucidate the interfacial interaction mechanisms of HPDP on the surfaces of the two minerals at different scales.Additionally,molecular modeling calculations were used to detail the spatial matching relationship between HPDP and the crystal faces of the two minerals.It was emphasized that HPDP specifically adsorbed onto the dolomite surface by forming calcium phosphonate,ensuring that the dolomite surface remained hydrophilic and sank.Moreover,it was found that the adsorption strength of HPDP on the mineral surfaces depended on the activity of the metal sites and their spatial distribution.These findings provide a theoretical foundation for the molecular design of flotation reagents for high-calcium magnesite ores.
基金Project(51671017)supported by the National Natural Science Foundation of ChinaProject(FRF-GF-17-B3)supported by the Fundamental Research Funds for the Central Universities,China+1 种基金Project supported by the Beijing Laboratory of Metallic Materials and Processing for Modern Transportation,ChinaProject(SKLSP201835)supported by the Fund of the State Key Laboratory of Solidification Processing in NWPU,China
文摘Mg/Cu bimetal composites were prepared by compound casting method, and the microstructure evolution, phase constitution and bonding strength at the interface were investigated.It is found that a good metallurgical bonding can be achieved at the interface of Mg and Cu,which consists of two sub-layers,i.e.,layer I with 30μm on the copper side composed of Mg2Cu matrix phase, on which a small amount of dendritic MgCu2 phase was randomly distributed;layerⅡ with 140μm on the magnesium side made up of the lamellar nano-eutectic network Mg2Cu+(Mg) and a small amount of detached Mg2Cu phase. The average interfacial shear strength of the bimetal composite is measured to be 13 MPa.This study provides a new fabrication process for the application of Mg/Cu bimetal composites as the hydrogen storage materials.
基金Project(51274038)supported by the National Natural Science Foundation of China
文摘Copper cladding aluminum(CCA)rods with the section dimensions of12mm in diameter and2mm in sheath thickness were fabricated by vertical core-filling continuous casting(VCFC)technology.The kinds and morphology of interfacial intermetallic compounds(IMCs)were investigated by SEM,XRD and TEM.The results showed that the interfacial structure of Cu/Al was mainly composed of layeredγ1(Cu9Al4),cellularθ(CuAl2),andα(Al)+θ(CuAl2)phases.Moreover,residual acicularε2(Cu3Al2+x)phase was observed at the Cu/Al interface.By comparing the driving force of formation forε2(Cu3Al2+x)andγ1(Cu9Al4)phases,the conclusion was drawn that theε2(Cu3Al2+x)formed firstly at the Cu/Al interface.In addition,the interfacial formation mechanism of copper cladding aluminum composites was revealed completely.
基金Fundamental Research Funds for the Central Universities,Grant/Award Numbers:2042023kf0233,2042022kf1177Key Research and Development Program of Hubei Province,Grant/Award Number:2021BAA192+2 种基金National Natural Science Foundation of China,Grant/Award Numbers:12172260,12102307,11890673Wuhan UniversityChina Postdoctoral Science Foundation,Grant/Award Number:GZC20231978。
文摘The moirésuperlattice,arising from the interface of mismatched single crystals,intricately regulates the physical and mechanical properties of materials,giving rise to phenomena such as superconductivity and superlubricity.This study delves into the profound impact of moirésuperlattices on the interfacial mechanical behavior of van der Waals(vdW)layered materials,with a particular focus on tribological properties.A comprehensive review of continuum modeling approaches for vdW layered materials is presented,accentuating the incorporation of moirésuperlattice effects in theoretical models to unravel their distinctive interfacial frictional behavior and thermodynamic properties.The exploration of moirésuperlattices has significantly advanced our fundamental understanding of interface phenomena in vdW layered materials.This progress provides crucial theoretical insights that can inform the design of multifunctional devices based on the unique properties of twisted layered materials.
基金support from the National Natural Science Foundation of China(Grant No.52208387)Open Fund of Key Laboratory of Geohazard Prevention of Hilly Mountains,Ministry of Land and Resources,China(Fujian Key Laboratory of Geohazard Prevention)(Grant No.FJKLGH2022K001).
文摘Full-length grouted bolts play a crucial role in geotechnical engineering thanks to their excellent stability.However,few studies have been concerned with the degrading performance of grouted rock bolts caused by extensive and continuous heat conduction from surrounding rocks in high-geothermal tunnels buried more than 100 m(temperature from 28C to 100C).To investigate the damage mechanism,we examined the time-varying behaviors of grouted rock bolts in both constant and variable temperature curing environments and their damage due to the coupling effects of high temperature and humidity through mechanical and micro-feature tests,including uniaxial compression test,pull-out test,computed tomography(CT)scans,X-ray diffraction(XRD)test,thermogravimetric analysis(TGA),etc.,and further analyzed the relationship between grout properties and anchorage capability.In order to facilitate a rapid assessment and control of the anchorage performance of anchors in different conditions,results of the interface bond degradation tests were correlated to environment parameters based on the damage model of interfacial bond stress proposed.Accordingly,a thermal hazard classification criterion for anchorage design in high-geothermal tunnels was suggested.Based on the reported results,although high temperature accelerated the early-stage hydration reaction of grouting materials,it affected the distribution and quantity of hydration products by inhibiting hydration degree,thus causing mechanical damage to the anchorage system.There was a significant positive correlation between the strength of the grouting material and the anchoring force.Influenced by the changes in grout properties,three failure patterns of rock bolts typically existed.Applying a hot-wet curing regime results in less reduction in anchorage force compared to the hot-dry curing conditions.The findings of this study would contribute to the design and investigations of grouted rock bolts in high-geothermal tunnels.
基金Project supported by the National Natural Science Foundation of China(No.11032005)the Science and Technology Scheme of Guangdong Province(No.2012A030200003)the Science and Technology Scheme of Guangzhou City(No.1563000451)
文摘For the better use of composites and a deeper insight into the fracture propa- gation and stress transfer of the interface between fiber and matrix, a theoretical solution of closed form is presented with the assumed bilinear local bond-slip law and a parabolic shear stress distribution along the thickness of the matrix. The load-displacement re- lationship and interfacial shear stress are obtained for four loading stages. Finally, the effects of Young's modulus of fiber (matrix) and bond length on the performance of the interface are illustrated.
基金This work was supported partially by the National Natural Science Foundation of China(No.51973171)China Postdoctoral Science Foundation(No.2019M663687)+1 种基金National Natural Science Foundation of China(No.52105587),the Foundation of State Key Laboratory of Organic-Inorganic Composites(oic-202001003)the University Joint Project-Key Projects of Shaanxi Province(No.2021GXLH-Z-042).
文摘The rapid improvement in the gel polymer electrolytes(GPEs)with high ionic conductivity brought it closer to practical applications in solid-state Li-metal batteries.The combination of solvent and polymer enables quasi-liquid fast ion transport in the GPEs.However,different ion transport capacity between solvent and polymer will cause local nonuniform Li+distribution,leading to severe dendrite growth.In addition,the poor thermal stability of the solvent also limits the operating-temperature window of the electrolytes.Optimizing the ion transport environment and enhancing the thermal stability are two major challenges that hinder the application of GPEs.Here,a strategy by introducing ion-conducting arrays(ICA)is created by vertical-aligned montmorillonite into GPE.Rapid ion transport on the ICA was demonstrated by 6Li solid-state nuclear magnetic resonance and synchrotron X-ray diffraction,combined with computer simulations to visualize the transport process.Compared with conventional randomly dispersed fillers,ICA provides continuous interfaces to regulate the ion transport environment and enhances the tolerance of GPEs to extreme temperatures.Therefore,GPE/ICA exhibits high room-temperature ionic conductivity(1.08 mS cm^(−1))and long-term stable Li deposition/stripping cycles(>1000 h).As a final proof,Li||GPE/ICA||LiFePO_(4) cells exhibit excellent cycle performance at wide temperature range(from 0 to 60°C),which shows a promising path toward all-weather practical solid-state batteries.
基金Funded by the Fundamental Research Funds for the Central Universities(WUT:142201001)
文摘The feasibility of using coral reef sand(CRS) in Portland cement concrete is investigated by testing the mechanical property and microstructure of concrete. The composition, structure and properties of the CRS are analyzed. Mechanical properties and microstructure of concrete with CRS are studied and compared to concrete with natural river sand. The relationship between the microstructure and performance of CRS concrete is established. The CRS has a porous surface with high water intake capacity, which contributes to the mechanical properties of concrete. The interfacial transition zone between the cement paste and CRS is densified compared to normal concrete with river sand. Hydration products form in the pore space of CRS and interlock with the matrix of cement paste, which increases the strength. The total porosity of concrete prepared with CRS is higher than that with natural sand. The main difference in pore size distribution is the fraction of fine pores in the range of 100 nm.
基金Funded partly by the Major State Basic Research Development Program("973"Program,Nos.2015CB655101 and 2013CB035901)the National Natural Science Foundation of China(Nos.51379163 and 51579195)
文摘We investigated mechanical properties of concretes made with impurity aggregates of different combinations. Besides the mechanisms were explored by EDS, CT, and hardness testing. The results showed that fully rust-stained and surface rust-stained sandstone aggregate had significant adverse impact on the compressive strength of concrete while sandstone aggregate had a much more obvious impact on the ultimate tension of concrete. Concrete crack was more prone to expand along surfaces and the micro-hardness of interfacial transition zone of different aggregates was ranked in decreasing trend as sandstone, slate, SR sandstone, marble, and FR sandstone. The cluster growth of long needle-like ettringite crystal and strong preferential growth trend of Ca(OH)2 crystals would result in wider interfacial transition zone range of concretes made with fully rust-stained sandstone and marble aggregate, respectively. Therefore, the impurity aggregate content should be strictly controlled during aggregate selection.
基金supported by the National Natural Science Foundation of China(Nos.22022608,21876113,22176127,21261140333,22106105 and 62071300)the Shanghai Engineering Research Center of Green Energy Chemical Engineering(No.18DZ2254200)+3 种基金“111”Innovation and Talent Recruitment Base on Photochemical and Energy Materials(No.D18020)Shanghai Government(Nos.22010503400,18SG41 and YDZX20213100003002)Shanghai Scientific and Technological Innovation Project(No.21DZ1206300)Shanghai Sailing Program(No.22YF1430400)。
文摘The widespread nitrogen oxides(NOx,mainly in NO)in the atmosphere have threatened human health and ecological environment.The dilute NO(ppb)is difficult to efficiently remove via the traditional process due to its characteristics of low concentration,wide range,large total amount,etc.Photocatalysis can utilize solar energy to purify NO pollutants under mild conditions,but its application is limited due to the low selectivity of nitrate and poor activity of NO removal.The underlying reason is that the interface mechanism of NO oxidation is not clearly understood,which leads to the inability to accurately regulate the NO oxidation process.Herein,the recent advances in the photocatalytic oxidation of NO are summarized.Firstly,the common strategies to effectively regulate carrier dynamics such as morphology control,facet engineering,defect engineering,plasma coupling,heterojunction and single-atom catalysts are discussed.Secondly,the progress of enhancing the adsorption and activation of reactants such as NO and O_(2) during NO oxidation is described in detail,and the corresponding NO oxidation mechanisms are enumerated.Finally,the challenges and prospects of photocatalytic NO oxidation are presented in term of nanotechnology for air pollution control.This review can shed light on the interface mechanism of NO oxidation and provide illuminating information on designing novel catalysts for efficient NOx control.
基金the support of IMDEA Materials Institute of Spainsupported by the National Natural Science Foundation of China(Project Nos.52072303 and 51821091)。
文摘In this work,the microstructure,failure behavior and interfacial properties with respective to the interfacial domain in SiCf/BN/SiC and C_(f)/PyC/SiC composites were studied via the fiber push-in test.The differences in the mechanical response of the interfacial domain were observed.During the fiber push-in test for SiCf/BN/SiC,the interface debonding accompanied with interphase fracture occurred,resulting in an obvious sign of the onset of debonding on loading-displacement(P-u)curves.While the good continuity of P-u curves can be observed for Cf/PyC/SiC,which is due to that the failure is in the form of interface debonding along with interphase lateral slipping caused by the extension of buckled carbon fiber,without any interphase fracture.The interfacial properties calculated from the fiber push-in test show that Cf/PyC/SiC possesses a weaker interfacial domain compared with SiC_(f)/BN/SiC.The interfacial shear stress of SiCf/BN/SiC and C_(f)/PyC/SiC composites amounts 94.2 and 48.1 MPa,respectively.
基金supported by the National Natural Science Foundation of China (Nos. 21107125, 21577160, 51221892, 51290282 and 41201498)
文摘The heterogeneous Fenton reaction can generate highly reactive hydroxyl radicals(·OH)from reactions between recyclable solid catalysts and H2O2 at acidic or even circumneutral pH.Hence,it can effectively oxidize refractory organics in water or soils and has become a promising environmentally friendly treatment technology.Due to the complex reaction system,the mechanism behind heterogeneous Fenton reactions remains unresolved but fascinating,and is crucial for understanding Fenton chemistry and the development and application of efficient heterogeneous Fenton technologies.Iron-based materials usually possess high catalytic activity,low cost,negligible toxicity and easy recovery,and are a superior type of heterogeneous Fenton catalysts.Therefore,this article reviews the fundamental but important interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials..OH,hydroperoxyl radicals/superoxide anions(HO2./O2^-.)and high-valent iron are the three main types of reactive oxygen species(ROS),with different oxidation reactivity and selectivity.Based on the mechanisms of ROS generation,the interfacial mechanisms of heterogeneous Fenton systems can be classified as the homogeneous Fenton mechanism induced by surface-leached iron,the heterogeneous catalysis mechanism,and the heterogeneous reaction-induced homogeneous mechanism.Different heterogeneous Fenton systems catalyzed by characteristic iron-based materials are comprehensively reviewed.Finally,related future research directions are also suggested.
文摘A modified FGH96 superalloy using 0.1 wt% graphene was successfully prepared using the wet mixing method. The interracial bonding mechanism between the graphene and the superalloy matrix was characterized using optical micro- scope, scanning electronic microscope, transmission electronic microscope and X-ray tomography. The results revealed that the graphene could be dispersed uniformly inside the matrix of the superalloy, and the bonding interface between graphene and the superalloy showed a rather diffusion instead of abrupt distinction, suggesting that the interface was formed via chemical fusion rather than a mechanical combination. The uniform dispersity of the graphene inside the superalloy matrix could improve the tensile properties significantly, including tensile strength, plasticity and yield strength. The existence of the graphene at the fracture surface further verified that the graphene could increase the effective bearing force of the material during the tensile test.
文摘Smoothly attaching the stretchable epidermal electronic devices(EEDs) onto the skin surface is highly desired to improve the measurement accuracy of electrophysiological signal.The paper presents an analytical approach to study interfacial mechanics of the 2D planar EEDs on the checkerboard buckling patterns of human skin.Energy variation method is proposed to determine a criterion whether EEDs laminate conformally onto the skin surface under undeformed and stretched cases.EEDs with low bending stiffness(thin,soft devices/backing layer),smooth and soft skin,and strong adhesion promote conformal contact.Furthermore,the adhesion energy at the EED/skin interface is measured by the homemade peeling experiment platform with different substrate thicknesses and areal coverages.The upper limit of the areal coverage for EED conformal contact with the skin is proposed with given EED/skin properties.Conformability of EEDs are validated by experiments with different substrate thickness,areal coverage and external loadings.It provides a design guideline for EED to conformally contact with the skin surface for more accurate biological signal monitoring.
文摘The γ/γ' microstructural evolution in a nickel based single crystal superalloy during load-free thermal exposure at 900 ℃ has been further investigated in this paper. The growth characteristics of γ' precipitates were discussed in detail. The generation of interfacial dislocations would accelerate the rate of coalescence in the dendrite arms. The average sizes of precipitates were used to compare interface with diffusion controlled growth mechanism and no mechanism seems obviously dominant, although the square rate law gives slightly better fit. The coarsening behavior may be controlled by diffusion through the ragged interface between the γ' precipitate and the y matrix.
基金financially supported by the National Basic Research Program of China(No.2009CB623701)the National Natural Science Foundation of China(Nos.11374174,50971075 and 51390471)
文摘Nickel-based single-crystal superalloys are the key materials for the manufacturing and development of advanced aeroengines. Rhenium is a crucial alloying element in the advanced nickel-based single-crystal superalloys for its special strengthening effects. The addition of Re could effectively enhance the creep properties of the single-crystal superalloys; thus, the content of Re is considered as one of the characteristics in different-generation single-crystal superalloys. Owing to the fundamental importance of rhenium to nickel-based single-crystal superalloys, much progress has been made on understanding of the effect of rhenium in the single-crystal superalloys. While the effect of Re doping on the nickelbased superalloys is well documented, the origins of the socalled rhenium effect are still under debate. In this paper,the effect of Re doping on the single-crystal superalloys and progress in understanding the rhenium effect are reviewed. The characteristics of the d-states occupancy in the electronic structure of Re make it the slowest diffusion elements in the single-crystal superalloys, which is undoubtedly responsible for the rhenium effect, while the postulates of Re cluster and the enrichment of Re at the c/c0 interface are still under debate, and the synergistic action of Re with other alloying elements should be further studied.Additionally, the interaction of Re with interfacial dislocations seems to be a promising explanation for the rhenium effect. Finally, the addition of Ru could help suppress topologically close-packed(TCP) phase formation and strengthen the Re doping single-crystal superalloys.Understanding the mechanism of rhenium effect will be beneficial for the effective utilization of Re and the design of low-cost single-crystal superalloys.
基金financial support of the project from the National Natural Science Foundation of China (Nos. 51571114 and 51401106)the Natural Science Foundation of Jiangsu Province (No. BK20130935)
文摘A series of silver-doped graphite-like carbon coatings was prepared on the surface of aluminum alloy using the magnetron sputtering method. The spontaneous escape behavior and inhibition mechanism of silver from graphite-like carbon coating were studied. The results showed that when the sample prepared with a 0.01-A current on the silver target was placed in an atmospheric environment for 0.5 h, an apparent silver escape phenomenon could be observed. However, the silver escape phenomenon was not observed for samples prepared with a 0.05-A current on the silver target if the sample was retained in a 10^(-1) Pa vacuum environment, even after 48 h. Compared with the sample placed in the atmospheric environment immediately after an ion plating process, the silver escape time lagged for 6 h. Nanometer-thick pure carbon coating coverage could effectively suppress silver escape. When the coating thickness reached700 nm, permanent retention of silver could be achieved in the silver-doped graphite-like carbon coating.As the silver residue content in the graphite-like carbon coating increased from 2.27 at.% to 5.35 at.%, the interfacial contact resistance of the coating decreased from 51mΩcm^2 to 6 mΩcm^2.
基金This project was supported by National Natural Science Foundation of China(Grant Nos.51974156 and 51974153)Key Laboratory of Sea Industry Steel Ansteel(Grant No.SKLMEA-USTL-201702).
文摘An innovative process of clad teeming was proposed to prepare slab ingot,which featured a built-in cold core to inhibit solidification defects.A 20-kg clad ingot was prepared in the experiment,using a volume ratio of solid core to molten steel of 1:13 and a preheating temperature of cold core of 573 K.Solidification microstructures of the clad ingot were analyzed by comparing with a reference ingot without cold core.Interfacial morphologies and mechanical properties of the clad ingot were studied before and after hot rolling.The effect of cold core on heat transfer and nucleation during the solidification in clad ingot was analyzed.Results show that the solidification microstructures in the clad ingot are refined and homogenized obviously.The grain size in the center of the reference ingot is 2–3 times greater than that of clad ingot,and there is almost no columnar grain in the clad ingot.The interfacial shear strength reaches 318 MPa,which shows excellent metallurgical bonding at the interface of cold core and molten steel.Tiny defects at the interface are eliminated,and interfacial shear strength reaches 426 MPa after hot rolling with a 68.4%total reduction ratio.The experiment and analysis of this process are expected to provide a new idea to prepare large ingots with refinement and homogeneity at a low cost.