期刊文献+
共找到40,902篇文章
< 1 2 250 >
每页显示 20 50 100
Reducing active layer thickness of polyamide composite membranes using a covalent organic framework interlayer in interfacial polymerization 被引量:5
1
作者 Meidi Wang Weixiong Guo +1 位作者 Zhongyi Jiang Fusheng Pan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第4期1039-1045,共7页
Polyamide(PA)-based thin-film composite membranes exhibit enormous potential in water purification,owing to their facile fabrication,decent performance and desirable stability.However,the thick PA active layer with hi... Polyamide(PA)-based thin-film composite membranes exhibit enormous potential in water purification,owing to their facile fabrication,decent performance and desirable stability.However,the thick PA active layer with high transport resistance from the conventional interfacial polymerization hampers their applications.The controllable fabrication of a thin PA active layer is essential for high separation efficiency but still challenging.Herein,a covalent organic framework TpPa-1 interlayer was firstly deposited on a polyethersulfone(PES)substrate to reduce the thickness of PA active layer in interfacial polymerization.The abundant pores of TpPa-1 increase the local concentration of amine monomers by adsorbing piperazine molecules,while hydrogen bonds between hydrophilic groups of TpPa-1 and piperazine molecules slow down their diffusion rate.Arising from those synergetic effects,the PA active layer is effectively reduced from 200 nm to 120 nm.By optimizing TpPa-1 interlayer and PA active layer,the water flux of resultant membranes can reach 171.35 L·m^-2·h^-1·MPa^-1,which increased by 125.4%compared with PA/PES membranes,while the rejection rates of sodium sulfate and dyes solution remained more than 90%and 99%,respectively.Our strategy may stimulate rational design of ultrathin PA-based nanofiltration membranes with high performances. 展开更多
关键词 Thin film composite membranes interfacial polymerization Covalent organic frameworks interlayer NANOFILTRATION
下载PDF
Preparation of Composite Charge-mosaic Hollow Fiber Membrane by Interfacial Polymerization 被引量:5
2
作者 HaoQinZHANG JinDunLIU 《Chinese Chemical Letters》 SCIE CAS CSCD 2004年第5期609-610,共2页
The preparation of composite charge-mosaic membrane included spinning of hollow fiber as the supporting membrane, preparing a selective layer on the inside surface of the fiber by interfacial polymerization. The char... The preparation of composite charge-mosaic membrane included spinning of hollow fiber as the supporting membrane, preparing a selective layer on the inside surface of the fiber by interfacial polymerization. The charge-mosaic membranes show a high salt permeability while retaining sucrose. The charge-mosaic membrane can be effectively used to separate multivalent salts with organic matter of molecular weight great than 300 g/mol in industry. 展开更多
关键词 Charge-mosaic membrane interfacial polymerization composite membrane.
下载PDF
CO2/CH4 separation using inside coated thin film composite hollow fiber membranes prepared by interfacial polymerization 被引量:4
3
作者 Eun-Sung Jo Xinghai An +3 位作者 Pravin G.Ingole Won-Kil Choi Yeong-Sung Park Hyung-Keun Lee 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第3期278-287,共10页
Carbon dioxide(CO_2) is greenhouse gas which originates primarily as a main combustion product of biogas and landfill gas. To separate this gas, an inside coated thin film composite(TFC) hollow fiber membrane was deve... Carbon dioxide(CO_2) is greenhouse gas which originates primarily as a main combustion product of biogas and landfill gas. To separate this gas, an inside coated thin film composite(TFC) hollow fiber membrane was developed by interfacial polymerization between 1,3–cyclohexanebis–methylamine(CHMA) and trimesoyl chloride(TMC). ATR-FTIR, SEM and AFM were used to characterize the active thin layer formed inside the PSf hollow fiber. The separation behavior of the CHMA-TMC/PSf membrane was scrutinized by studying various effects like feed gas pressure and temperature. Furthermore, the influence of CHMA concentration and TMC concentration on membrane morphology and performance were investigated. As a result, it was found that mutually the CHMA concentration and TMC concentration play key roles in determining membrane morphology and performance. Moreover, the CHMA-TMC/PSf composite membrane showed good CO_2/CH_4 separation performance. For CO_2/CH_4 mixture gas(30/70 by volume) test, the membrane(PD1 prepared by CHMA 1.0% and TMC 0.5%) showed a CO_2 permeance of 25 GPU and the best CO_2/CH_4 selectivity of 28 at stage cut of 0.1. The high CO_2/CH_4 separation performance of CHMA-TMC/PSf thin film composite membrane was mostly accredited to the thin film thickness and the properties of binary amino groups. 展开更多
关键词 Thin-film composite hollow fiber membrane interfacial polymerization CHMA/TMC CO2/CH4 separation
下载PDF
Covalent organic frameworks-incorporated thin film composite membranes prepared by interfacial polymerization for efficient CO_(2) separation 被引量:3
4
作者 Haoqing Xu Wenyan Feng +4 位作者 Menglong Sheng Ye Yuan Bo Wang Jixiao Wang Zhi Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第3期152-160,共9页
Thin film composite(TFC)membranes with nanofillers additives for CO_(2)separation show promising applications in energy and environment-related fields.However,the poor compatibility between nanofillers and polymers in... Thin film composite(TFC)membranes with nanofillers additives for CO_(2)separation show promising applications in energy and environment-related fields.However,the poor compatibility between nanofillers and polymers in TFC membranes is the main problem.In this work,covalent organic frameworks(COFs,TpPa-1)with rich ANHA groups were incorporated into polyamide(PA)segment via in situ interfacial polymerization to prepare defect-free TFC membranes for CO_(2)/N_(2)separation.The formed covalent bonds between TpPa-1 and PA strengthen the interaction between nanofillers and polymers,thereby enhancing compatibility.Besides,the incorporated COFs disturb the rigid structure of the PA layer,and provide fast CO_(2)transfer channels.The incorporated COFs also increase the content of effective carriers,which enhances the CO_(2)facilitated transport.Consequently,in CO_(2)/N_(2)mixed gas separation test,the optimal TFC(TpPa_(0.025)-PIP-TMC/m PSf)membrane exhibits high CO_(2)permeance of 854 GPU and high CO_(2)/N_(2)selectivity of 148 at 0.15 MPa,CO_(2)permeance of 456 GPU(gas permeation unit)and CO_(2)/N_(2)selectivity of 92 at 0.5 MPa.In addition,the Tp Pa_(0.025)-PIP-TMC/m PSf membrane also achieves high permselectivty in CO_(2)/CH_(4)mixed gas separation test.Finally,the optimal TFC membrane showes good stability in the simulated flue gas test,revealing the application potential for CO_(2)capture from flue gas. 展开更多
关键词 Covalent organic frameworks CO_(2)/N_(2)separation In situ interfacial polymerization Compatibility Covalent bonds
下载PDF
Preparation of Thin Film Composite Nanofiltration Membrane by Interfacial Polymerization with 3,5-Diaminobenzoylpiperazine and Trimesoyl Chloride 被引量:2
5
作者 王丽红 李德玲 +2 位作者 程丽华 张林 陈欢林 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第2期262-266,共5页
A new aromatic diamine,3,5-diaminobenzoylpiperazine (3,5-DABP),was synthesized from 3,5-diaminobenzoic acid and 1-formyl piperazine.The structure of 3,5-DABP was identified by FT-IR spectra and 1H NMR spectra.With 3... A new aromatic diamine,3,5-diaminobenzoylpiperazine (3,5-DABP),was synthesized from 3,5-diaminobenzoic acid and 1-formyl piperazine.The structure of 3,5-DABP was identified by FT-IR spectra and 1H NMR spectra.With 3,5-DABP as aqueous monomer and trimesoyl chloride (TMC) as organic monomer,thin film composite (TFC) nanofiltration membranes were prepared by interfacial polymerization technology.The salt rejection order of these TFC membranes is Na2SO4MgSO4MgCl2NaCl.This sequence indicates that the membranes are negatively charged. 展开更多
关键词 thin film composite membrane 3 5-diaminobenzoylpiperazine trimesoyl chloride interfacial polymerization
下载PDF
Composite nanofiltration membranes synthesized from PAMAM and TMC by interfacial polymerization 被引量:3
6
作者 金丽梅 时文歆 +4 位作者 于水利 衣雪松 孙楠 马聪 王硕 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2012年第1期116-120,共5页
A novel NF membrane prepared with poly(amidoamine) (PAMAM) dendrimer and trimesoyl chloride (TMC) by interfacial polymerization on polysulfone (PSF) ultrafiltration membrane was investigated. Field emission sc... A novel NF membrane prepared with poly(amidoamine) (PAMAM) dendrimer and trimesoyl chloride (TMC) by interfacial polymerization on polysulfone (PSF) ultrafiltration membrane was investigated. Field emission scanning electron microcopy ( FESEM), atomic force micrograph ( AFM ) and contact angle (CA) of pure water on PA and PSF substrate were employed to characterize the chemical and physical properties of membranes. The PAMAM concentration, retention of salt solutions and organics were studied on the performance of the NF membrane. From the analyses of SEM and AFM, the polyamide active skin layers of the composite membranes are dense, rough, and finely dispersed nodular structures, packed tightly by the spherical globules. The contact angle of PA nanofitration membrane decreased after polymerization. The higher PAMAM concentra- tion can result in lower flux and higher rejection. The salt rejection of PA membranes decreases in the order K2 SO4 〉 Na2 SO4 〉 MgSQ 〉 MgC12 〉 CaC12 〉 NaC1, which indicates that the resulting membranes is nagatively charged. The pH increases from 3 to 10 in the feed resulting in the decrease of the flux and the increase of the rejection for NazSO4 solution. The molecular weight cut off (MWCO) of the composite NF membrane is nearly 860 kg/mol. The resulted PA membrane can be used to seoarate small organics and salt solutions. 展开更多
关键词 PAMAM PSF Nanofihration membrane Interfaeial polymerization
下载PDF
Highly permeable reverse osmosis membranes incorporated with hydrophilic polymers of intrinsic microporosity via interfacial polymerization
7
作者 Jing Dou Shuo Han +3 位作者 Saisai Lin Zhikan Yao Lian Hou Lin Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第5期194-202,共9页
Enhancing the water permeation while maintaining high salt rejection of existing reverse osmosis(RO)membranes remains a considerable challenge.Herein,we proposed to introduce polymer of intrinsic microporosity,PIM-1,i... Enhancing the water permeation while maintaining high salt rejection of existing reverse osmosis(RO)membranes remains a considerable challenge.Herein,we proposed to introduce polymer of intrinsic microporosity,PIM-1,into the selective layer of reverse osmosis membranes to break the trade-off effect between permeability and selectivity.A water-soluble a-LPIM-1 of low-molecular-weight and hydroxyl terminals was synthesized.These designed characteristics endowed it with high solubility and reactivity.Then it was mixed with m-phenylenediamine and together served as aqueous monomer to react with organic monomer of trimesoyl chloride via interfacial polymerization.The characterization results exhibited that more“nodule”rather than“leaf”structure formed on RO membrane surface,which indicated that the introduction of the high free-volume of a-LPIM-1 with three dimensional twisted and folded structure into the selective layer effectively caused the frustrated packing between polymer chains.In virtue of this effect,even with reduced surface roughness and unchanged layer thickness,the water permeability of prepared reverse osmosis membranes increased 2.1 times to 62.8 L·m^(-2)·h^(-1) with acceptable Na Cl rejection of 97.6%.This attempt developed a new strategy to break the trade-off effect faced by traditional polyamide reverse osmosis membranes. 展开更多
关键词 PIM-1 Intrinsic microporosity Reverse osmosis interfacial polymerization Trade-off
下载PDF
Microencapsulation of Chlorocyclophosphazene by Interfacial Polymerization 被引量:1
8
作者 刘亚青 赵贵哲 《Defence Technology(防务技术)》 SCIE EI CAS 2007年第1期71-73,共3页
A polyurea-chlorocyclophosphazene microcapsule flame retardant is prepared by an interfacial polymerization process using 2,4-toluene diisocyanate (TDI) and hexanediamine as the raw materials. TG tests show that the t... A polyurea-chlorocyclophosphazene microcapsule flame retardant is prepared by an interfacial polymerization process using 2,4-toluene diisocyanate (TDI) and hexanediamine as the raw materials. TG tests show that the thermal decomposition temperature of chlorocyclophosphazene in microcapsule obviously rises. The flame retardancy of HDPE/chlorocyclophosphazene in microencapsules is better than that of HDPE/chlorocyclophosphazene. Mechanical properties of HDPE/chlorocyclophosphazene microencapsule turn out to be superior to those of HDPE/chlorocyclophosphazene. 展开更多
关键词 环状氯化磷腈 微胶囊化 界面聚合 高密度聚乙烯 阻燃剂
下载PDF
Multiphase Interfacial Regulation Based on Hierarchical Porous Molybdenum Selenide to Build Anticorrosive and Multiband Tailorable Absorbers 被引量:10
9
作者 Tianbao Zhao Zirui Jia +3 位作者 Jinkun Liu Yan Zhang Guanglei Wu Pengfei Yin 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期85-105,共21页
Electromagnetic wave(EMW)absorbing materials have an irreplaceable position in the field of military stealth as well as in the field of electromagnetic pollution control.And in order to cope with the complex electroma... Electromagnetic wave(EMW)absorbing materials have an irreplaceable position in the field of military stealth as well as in the field of electromagnetic pollution control.And in order to cope with the complex electromagnetic environment,the design of multifunctional and multiband high efficiency EMW absorbers remains a tremendous challenge.In this work,we designed a three-dimensional porous structure via the salt melt synthesis strategy to optimize the impedance matching of the absorber.Also,through interfacial engineering,a molybdenum carbide transition layer was introduced between the molybdenum selenide nanoparticles and the three-dimensional porous carbon matrix to improve the absorption behavior of the absorber.The analysis indicates that the number and components of the heterogeneous interfaces have a significant impact on the EMW absorption performance of the absorber due to mechanisms such as interfacial polarization and conduction loss introduced by interfacial engineering.Wherein,the prepared MoSe_(2)/MoC/PNC composites showed excellent EMW absorption performance in C,X,and Ku bands,especially exhibiting a reflection loss of−59.09 dB and an effective absorption bandwidth of 6.96 GHz at 1.9 mm.The coordination between structure and components endows the absorber with strong absorption,broad bandwidth,thin thickness,and multi-frequency absorption characteristics.Remarkably,it can effectively reinforce the marine anticorrosion property of the epoxy resin coating on Q235 steel substrate.This study contributes to a deeper understanding of the relationship between interfacial engineering and the performance of EMW absorbers,and provides a reference for the design of multifunctional,multiband EMW absorption materials. 展开更多
关键词 interfacial engineering ANTICORROSION MULTIBAND Electromagnetic wave absorber
下载PDF
In-situ interfacial passivation and self-adaptability synergistically stabilizing all-solid-state lithium metal batteries 被引量:1
10
作者 Huanhui Chen Xing Cao +6 位作者 Moujie Huang Xiangzhong Ren Yubin Zhao Liang Yu Ya Liu Liubiao Zhong Yejun Qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期282-292,I0007,共12页
The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined ... The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries. 展开更多
关键词 Solid-state lithium batteries Composite solid electrolyte In-situ polymerization interfacial passivation layer Self-adaptability
下载PDF
Fabrication of Solvent-Resistant Nanofiltration Membrane via Interfacial Polymerization Based on Cellulose Acetate Membrane
11
作者 Chen Su Lina Chi +2 位作者 Yingjia Qian Siwei Sun Zheng Jiang 《Journal of Materials Science and Chemical Engineering》 2018年第12期1-15,共15页
Although a great progress has been achieved for the development of NF membranes and technologies and SRNF do show a great potential in the separation of organic components, an NF membrane with good separation performa... Although a great progress has been achieved for the development of NF membranes and technologies and SRNF do show a great potential in the separation of organic components, an NF membrane with good separation performance and good resistance to organic solvents are urgently needed for a more complicated situation in practical. In this study, a kind of solvent-resistant nanofiltration (SRNF) membrane was fabricated via interfacial polymerization on a laboratory optimized cellulose acetate (CA) basic membrane. The effects of interfacial polymerization parameters, such as water phase concentration, immersed time in the water phase and in the organic phase, on the pure water flux and rejection rate of C-2R yellow dyestuffs were investigated. A highest dye rejection rate of 72.9% could be obtained by water phase solution containing 1% m-xylylenediamine (mXDA) and organic phase solution with 0.2% trimesoyl chloride (TMC) under immersed time in water phase of 6 minutes and in organic phase of 40 seconds. This membrane demonstrated better resistance to methyl alcohol compared to commercial membrane. This study may offer an avenue to develop a solvent-resistant nanofiltration membrane. 展开更多
关键词 CELLULOSE ACETATE interfacial polymerization Solvent-Resistant NANOFILTRATION MEMBRANE
下载PDF
Towards advanced zinc anodes by interfacial modification strategies for efficient aqueous zinc metal batteries 被引量:1
12
作者 Changchun Fan Weijia Meng Jiaye Ye 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期79-110,I0003,共33页
Developing sustainable and clean energy sources(e.g.,solar,wind,and tide energy)is essential to achieve the goal of carbon neutrality.Due to the discontinuous and inco nsistent nature of common clean energy sources,hi... Developing sustainable and clean energy sources(e.g.,solar,wind,and tide energy)is essential to achieve the goal of carbon neutrality.Due to the discontinuous and inco nsistent nature of common clean energy sources,high-performance energy storage technologies are a critical part of achieving this target.Aqueous zinc metal batteries(AZMBs)with inherent safety,low cost,and competitive performance are regarded as one of the promising candidates for grid-scale energy storage.However,zinc metal anodes(ZMAs)with irreversible problems of dendrite growth,hydrogen evolution reaction,self-corrosio n,and other side reactions have seriously hindered the development and commercialization of AZMBs.An increasing number of researchers are focusing on the stability of ZMAs,so assessing the effectiveness of existing research strategies is critical to the development of AZMBs.This review aims to provide a comprehensive overview of the fundamentals and challenges of AZMBs.Resea rch strategies for interfacial modification of ZMAs are systematically presented.The features of artificial interfacial coating and in-situ interfacial coating of ZMAs are compared and discussed in detail,as well as the effect of modified interfacial ZMA on the full-battery performance.Finally,perspectives are provided on the problems and challenges of ZMAs.This review is expected to offer a constructive reference for the further development and commercialization of AZMBs. 展开更多
关键词 Aqueous zinc metal batteries Zinc metal anode interfacial modification Artificial interfacial coating In-situ interfacial coating
下载PDF
Interfacial engineering through lead binding using crown ethers in perovskite solar cells 被引量:1
13
作者 Sun-Ju Kim YeonJu Kim +8 位作者 Ramesh Kumar Chitumalla Gayoung Ham Thanh-Danh Nguyen Joonkyung Jang Hyojung Cha Jovana Milić Jun-Ho Yum Kevin Sivula Ji-Youn Seo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期263-270,共8页
In the domain of perovskite solar cells(PSCs),the imperative to reconcile impressive photovoltaic performance with lead-related issue and environmental stability has driven innovative solutions.This study pioneers an ... In the domain of perovskite solar cells(PSCs),the imperative to reconcile impressive photovoltaic performance with lead-related issue and environmental stability has driven innovative solutions.This study pioneers an approach that not only rectifies lead leakage but also places paramount importance on the attainment of rigorous interfacial passivation.Crown ethers,notably benzo-18-crown-6-ether(B18C6),were strategically integrated at the perovskite-hole transport material interface.Crown ethers exhibit a dual role:efficiently sequestering and immobilizing Pb^(2+)ions through host-guest complexation and simultaneously establishing a robust interfacial passivation layer.Selected crown ether candidates,guided by density functional theory(DFT)calculations,demonstrated proficiency in binding Pb2+ions and optimizing interfacial energetics.Photovoltaic devices incorporating these materials achieved exceptional power conversion efficiency(PCE),notably 21.7%for B18C6,underscoring their efficacy in lead binding and interfacial passivation.Analytical techniques,including time-of-flight secondary ion mass spectrometry(ToF-SIMS),ultraviolet photoelectron spectroscopy(UPS),time-resolved photoluminescence(TRPL),and transient absorption spectroscopy(TAS),unequivocally affirmed Pb^(2+)ion capture and suppression of non-radiative recombination.Notably,these PSCs maintained efficiency even after enduring 300 h of exposure to 85%relative humidity.This research underscores the transformative potential of crown ethers,simultaneously addressing lead binding and stringent interfacial passivation for sustainable PSCs poised to commercialize and advance renewable energy applications. 展开更多
关键词 Perovskite solar cells interfacial passivation Crown ether materials Stability
下载PDF
Interfacial Modification of NiO_(x)by Self-assembled Monolayer for Efficient and Stable Inverted Perovskite Solar Cells 被引量:1
14
作者 Xin Yu Yandong Wang +5 位作者 Liufei Li Shantao Zhang Shuang Gao Mao Liang Wen-Hua Zhang Shangfeng Yang 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2024年第4期553-562,I0080-I0091,I0095,共23页
NiO_(x)as a hole transport material for inverted perovskite solar cells has received great attention owing to its high transparency,low fabrication temperature,and superior stability.However,the mismatched energy leve... NiO_(x)as a hole transport material for inverted perovskite solar cells has received great attention owing to its high transparency,low fabrication temperature,and superior stability.However,the mismatched energy levels and possible redox reactions at the NiO_(x)/perovskite interface severely limit the performance of NiO_(x) based inverted perovskite solar cells.Herein,we introduce a p-type self-assembled monolayer between NiO_(x)and perovskite layers to modify the interface and block the undesirable redox reaction between perovskite and NiO_(x)The selfassembled monolayer molecules all contain phosphoric acid function groups,which can be anchored onto the NiOr surface and passivate the surface defect.Moreover,the introduction of self-assembled monolayers can regulate the energy level structure of NiO_(x),reduce the interfacial band energy offset,and hence promote the hole transport from perovskite to NiO_(x)layer.Consequently,the device performance is significantly enhanced in terms of both power conversion efficiency and stability. 展开更多
关键词 Perovskite solar cell NiO_(x) Self-assembled monolayer interfacial engineering Stability
下载PDF
An ultrathin and robust single-ion conducting interfacial layer for dendrite-free lithium metal batteries 被引量:1
15
作者 Ting-Ting Lv Jia Liu +2 位作者 Li-Jie He Hong Yuan Tong-Qi Yuan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期414-421,共8页
The practical application of rechargeable lithium metal batteries(LMBs) encounters significant challenges due to the notorious dendrite growth triggered by uneven Li deposition behaviors. In this work,a mechanically r... The practical application of rechargeable lithium metal batteries(LMBs) encounters significant challenges due to the notorious dendrite growth triggered by uneven Li deposition behaviors. In this work,a mechanically robust and single-ion-conducting interfacial layer, fulfilled by the strategic integration of flexible cellulose acetate(CA) matrix with rigid graphene oxide(GO) and Li F fillers(termed the CGL layer), is rationally devised to serve as a stabilizer for dendrite-free lithium(Li) metal batteries. The GCL film exhibits favorable mechanical properties with high modulus and flexibility that help to relieve interface fluctuations. More crucially, the electron-donating carbonyl groups(C=O) enriched in GCL foster a strengthened correlation with Li^(+), which availably aids the Li^(+)desolvation process and expedites facile Li^(+)mobility, yielding exceptional Li^(+) transference number of 0.87. Such single-ion conductive properties regulate rapid and uniform interfacial transport kinetics, mitigating the growth of Li dendrites and the decomposition of electrolytes. Consequently, stable Li anode with prolonged cycle stabilities and flat deposition morphologies are realized. The Li||LiFePO_(4) full cells with CGL protective layer render an outstanding cycling capability of 500 cycles at 3 C, and an ultrahigh capacity retention of 99.99% for over 220 cycles even under harsh conditions. This work affords valuable insights into the interfacial regulation for achieving high-performance LMBs. 展开更多
关键词 Single-ion conductive interfacial layer Cellulose acetate Dendrite-free morphologies Lithium metal batteries
下载PDF
Highly Active Interfacial Sites in SFT-SnO_(2) Heterojunction Electrolyte for Enhanced Fuel Cell Performance via Engineered Energy Bands:Envisioned Theoretically and Experimentally 被引量:1
16
作者 Sajid Rauf Muhammad Bilal Hanif +8 位作者 Faiz Wali Zuhra Tayyab Bin Zhu Naveed Mushtaq Yatao Yang Kashif Khan Peter D.Lund Martin Motola Wei Xu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期384-397,共14页
Extending the ionic conductivity is the pre-requisite of electrolytes in fuel cell technology for high-electrochemical performance.In this regard,the introduction of semiconductor-oxide materials and the approach of h... Extending the ionic conductivity is the pre-requisite of electrolytes in fuel cell technology for high-electrochemical performance.In this regard,the introduction of semiconductor-oxide materials and the approach of heterostructure formation by modulating energy bands to enhance ionic conduction acting as an electrolyte in fuel cell-device.Semiconductor(n-type;SnO_(2))plays a key role by introducing into p-type SrFe_(0.2)Ti_(0.8)O_(3-δ)(SFT)semiconductor perovskite materials to construct p-n heterojunction for high ionic conductivity.Therefore,two different composites of SFT and SnO_(2)are constructed by gluing p-and n-type SFT-SnO_(2),where the optimal composition of SFT-SnO_(2)(6∶4)heterostructure electrolyte-based fuel cell achieved excellent ionic conductivity 0.24 S cm^(-1)with power-output of 1004 mW cm^(-2)and high OCV 1.12 V at a low operational temperature of 500℃.The high power-output and significant ionic conductivity with durable operation of 54 h are accredited to SFT-SnO_(2)heterojunction formation including interfacial conduction assisted by a built-in electric field in fuel cell device.Moreover,the fuel conversion efficiency and considerable Faradaic efficiency reveal the compatibility of SFT-SnO_(2)heterostructure electrolyte and ruled-out short-circuiting issue.Further,the first principle calculation provides sufficient information on structure optimization and energy-band structure modulation of SFT-SnO_(2).This strategy will provide new insight into semiconductor-based fuel cell technology to design novel electrolytes. 展开更多
关键词 high ionic conductivity interfacial conduction modulated energy band structure p-n heterojunction SEMICONDUCTORS
下载PDF
Two-photon polymerization lithography for imaging optics 被引量:1
17
作者 Hao Wang Cheng-Feng Pan +16 位作者 Chi Li Kishan S Menghrajani Markus A Schmidt Aoling Li Fu Fan Yu Zhou Wang Zhang Hongtao Wang Parvathi Nair Suseela Nair John You En Chan Tomohiro Mori Yueqiang Hu Guangwei Hu Stefan A Maier Haoran Ren Huigao Duan Joel K W Yang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第4期21-60,共40页
Optical imaging systems have greatly extended human visual capabilities,enabling the observation and understanding of diverse phenomena.Imaging technologies span a broad spectrum of wavelengths from x-ray to radio fre... Optical imaging systems have greatly extended human visual capabilities,enabling the observation and understanding of diverse phenomena.Imaging technologies span a broad spectrum of wavelengths from x-ray to radio frequencies and impact research activities and our daily lives.Traditional glass lenses are fabricated through a series of complex processes,while polymers offer versatility and ease of production.However,modern applications often require complex lens assemblies,driving the need for miniaturization and advanced designs with micro-and nanoscale features to surpass the capabilities of traditional fabrication methods.Three-dimensional(3D)printing,or additive manufacturing,presents a solution to these challenges with benefits of rapid prototyping,customized geometries,and efficient production,particularly suited for miniaturized optical imaging devices.Various 3D printing methods have demonstrated advantages over traditional counterparts,yet challenges remain in achieving nanoscale resolutions.Two-photon polymerization lithography(TPL),a nanoscale 3D printing technique,enables the fabrication of intricate structures beyond the optical diffraction limit via the nonlinear process of two-photon absorption within liquid resin.It offers unprecedented abilities,e.g.alignment-free fabrication,micro-and nanoscale capabilities,and rapid prototyping of almost arbitrary complex 3D nanostructures.In this review,we emphasize the importance of the criteria for optical performance evaluation of imaging devices,discuss material properties relevant to TPL,fabrication techniques,and highlight the application of TPL in optical imaging.As the first panoramic review on this topic,it will equip researchers with foundational knowledge and recent advancements of TPL for imaging optics,promoting a deeper understanding of the field.By leveraging on its high-resolution capability,extensive material range,and true 3D processing,alongside advances in materials,fabrication,and design,we envisage disruptive solutions to current challenges and a promising incorporation of TPL in future optical imaging applications. 展开更多
关键词 two-photon polymerization lithography 3D printing additive manufacturing IMAGING optics and nanophotonics
下载PDF
Synthesis, Structure and Properties of Bacterial Cellulose/polyaniline/manganese Dioxide Nanocomposites via Layer-by-layer Interfacial Polymerization
18
作者 Hubin Lin Chongming Du Zhidan Lin 《材料科学研究(中英文版)》 2014年第1期1-9,共9页
关键词 纳米复合材料 细菌纤维素 二氧化锰 聚苯胺 界面聚合法 合成 多层复合材料 酸性水溶液
下载PDF
Interfacial reinforcement of core-shell HMX@energetic polymer composites featuring enhanced thermal and safety performance
19
作者 Binghui Duan Hongchang Mo +3 位作者 Bojun Tan Xianming Lu Bozhou Wang Ning Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期387-399,共13页
The weak interface interaction and solid-solid phase transition have long been a conundrum for 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane(HMX)-based polymer-bonded explosives(PBX).A two-step strategy that involves... The weak interface interaction and solid-solid phase transition have long been a conundrum for 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane(HMX)-based polymer-bonded explosives(PBX).A two-step strategy that involves the pretreatment of HMX to endow—OH groups on the surface via polyalcohol bonding agent modification and in situ coating with nitrate ester-containing polymer,was proposed to address the problem.Two types of energetic polyether—glycidyl azide polymer(GAP)and nitrate modified GAP(GNP)were grafted onto HMX crystal based on isocyanate addition reaction bridged through neutral polymeric bonding agent(NPBA)layer.The morphology and structure of the HMX-based composites were characterized in detail and the core-shell structure was validated.The grafted polymers obviously enhanced the adhesion force between HMX crystals and fluoropolymer(F2314)binder.Due to the interfacial reinforcement among the components,the two HMX-based composites exhibited a remarkable increment of phase transition peak temperature by 10.2°C and 19.6°C with no more than 1.5%shell content,respectively.Furthermore,the impact and friction sensitivity of the composites decreased significantly as a result of the barrier produced by the grafted polymers.These findings will enhance the future prospects for the interface design of energetic composites aiming to solve the weak interface and safety concerns. 展开更多
关键词 HMX crystals Polyalcohol bonding agent Energetic polymer Core-shell structure interfacial reinforcement
下载PDF
Effect of phosphorus content on interfacial heat transfer and film deposition behavior during the high-temperature simulation of strip casting
20
作者 Wanlin Wang Cheng Lu +5 位作者 Liang Hao Jie Zeng Lejun Zhou Xinyuan Liu Xia Li Chenyang Zhu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1016-1025,共10页
The interfacial wettability and heat transfer behavior are crucial in the strip casting of high phosphorus-containing steel.A hightemperature simulation of strip casting was conducted using the droplet solidification ... The interfacial wettability and heat transfer behavior are crucial in the strip casting of high phosphorus-containing steel.A hightemperature simulation of strip casting was conducted using the droplet solidification technique with the aims to reveal the effects of phosphorus content on interfacial wettability,deposited film,and interfacial heat transfer behavior.Results showed that when the phosphorus content increased from 0.014wt%to 0.406wt%,the mushy zone enlarged,the complete solidification temperature delayed from1518.3 to 1459.4℃,the final contact angle decreased from 118.4°to 102.8°,indicating improved interfacial contact,and the maximum heat flux increased from 6.9 to 9.2 MW/m2.Increasing the phosphorus content from 0.081wt%to 0.406wt%also accelerated the film deposition rate from 1.57 to 1.73μm per test,resulting in a thickened naturally deposited film with increased thermal resistance that advanced the transition point of heat transfer from the fifth experiment to the third experiment. 展开更多
关键词 strip casting interfacial heat transfer interfacial wettability naturally deposited film phosphorus content
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部